

3.3.1 Prove in laboratorio sui campioni prelevati nei sondaggi

Le carote di terreno estratte nei sondaggi sono state poste all'interno di opportune cassette quotate e consegnate alla committenza. Nel seguito si riporta un quadro riepilogativo dei campioni prelevati e del tipo di prove eseguite.

Sond	Campione (ind/rim)	Prof. prel. (m)	Prove di laboratorio
S22	A (ind.)	3,00 - 3,50	
S22	B (ind.)	8,70 - 9,30	Caratteristiche fisiche, prova triassiale CU
S22	1 (rim)	18,4 – 18,5	
S21	A(ind.)	3,00 - 3,40	Caratteristiche fisiche, prova triassiale CU, consolidazione edometrica
S21	B (ind.)	6,50 - 7,00	Caratteristiche fisiche, prova triassiale UU
S21	1 (rim)	14,00 - 14,30	
S1	A(ind.)	3,00 - 3,70	Caratteristiche fisiche, prova triassiale UU
S1	B (ind.)	6,00 - 6,70	Caratteristiche fisiche, prova triassiale CU, consolidazione edometrica
S1	1 (rim)	7,40 – 7,50	Caratteristiche fisiche, prova taglio diretto CD su terreno ricostituito
S2	A (ind.)	3,00 - 3,50	Caratteristiche fisiche, prova triassiale CU, consolidazione edometrica
S2	B (ind.)	6,00 - 6,50	Caratteristiche fisiche, prova triassiale UU
S2	1 (rim)	9,80 - 10,00	(<u>and a second</u>)

Figura 3.16 Riepilogo delle prove eseguite sui campioni di terreno prelevati

Nelle tabelle seguenti si riportano alcune proprietà caratteristiche dei campioni prelevati in sito.

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

CLIENTE: INSULA S.p.a. FOGLIO 25 di 133

Sond.	Camp.	Prof. m dal p.c.	Ghiaia (%)	Sabbia (%)	Limo + Argilla (%)	W (%)	γ (kN/m ³)	γs (kN/m ³)	WL (%)	WP (%)	IP (%)
S1	Α	3,00 -3,70		1,26	98,74	36,7	19,93	N.D.	41	26	15
S1	В	6,00 - 6,70		2,23	97,77	43,3	16,84	26,97	61	33	28
S1	1	7,40 - 7,50		60,98	39,02	25,0	19,47	N.D.	N.P.	N.P.	N.D.
S2	Α	3,00 - 3,50	0,59	2,67	96,74	39,6	17,99	27,52	47	27	20
S2	В	6,00 - 6,50	0,03	1,46	98,51	38,7	<mark>19,86</mark>	N.D.	45	28	17
S21	Α	3,00 - 3,40		0,87	99,13	51,3	17,42	26,68	64	33	31
S21	В	6,50 - 7,00		7,62	92,38	34,7	19,76	N.D.	36	28	8
S22	В	8,70 - 9,30		0,35	99,65	27,4	20,04	N.D.	46	25	21

Figura 3.17 Proprietà indici dei campioni esaminati in laboratorio

Sond.	Camp.	Prof. m dal p.c.	φ΄ (°) TXCU	c' (kPa) TXCU	c _u (kPa) TXUU	φ΄ (°) TDCD	c' (kPa) TDCD	Eed (kPa)
S1	Α	3,00 - 3,70			21,9			
S1	В	6,00 - 6,70	24,4	7				1.955
S1	1	7,40 - 7,50				33,6	8,0	
S2	Α	3,00 - 3,50	23,3	29				2.310
S2	В	6,00 - 6,50			14,3			
S21	Α	3,00 - 3,40	25,6	27				1.895
S21	В	6,50 - 7,00			21,0			
S22	В	8,70 - 9,30	24,6	4				

Figura 3.18 parametri di resistenza al taglio e di compressibilità dei campioni esaminati in laboratorio

3.3.2 Prove penetrometriche dinamiche SPT

Come riportato precedentemente, durante l'esecuzione dei sondaggi, in corrispondenza delle lenti sabbiose sono state effettuate prove penetrometriche SPT con campionatore Raymond. A causa del ridotto spessore degli strati sabbiosi, solamente nei sondaggi S2 e S22 è stato intercettato uno strato di sabbia. Con opportune relazioni empiriche è stato possibile determinare i parametri geotecnici riportati nell'immagine seguente.

Sond.	Prof. m dal p.c.	n. colpi (15 cm)	NSPT	Dr (%)	φ (°)	Es (kg/cm2)	cu (kg/cm2)	Litologia
S22	7,00 - 7,45	7 – 5 – 4	9	38	33,3	120		Sabbia medio- fine
S21	14,50 – 14,95	7 – 2 – 1	3				0,25	Sabbia fine limosa passante ad argilla
S1	7,55 - 8,00	1-2-2	4				0,25	Argilla limosa
S2	9,00 - 9,45	4 – 5 – 7	12	41	33,7	135		Sabbia fine limosa

Figura 3.19 Interpretazione delle prove SPT

3.3.3 Prove penetrometriche statiche CPT

Per le prove CPT è stato usato un penetrometro statico autoancorante con una capacità di spinta pari a 20t, munito di punta meccanica tipo Begemann. La prova è stata eseguita secondo le norme ASTM D3441-86 e consiste nell'infissione della punta mediante una batteria di aste collegate ad un opportuno sistema di spinta idraulica con velocità di infissione costante pari a 2cm/sec. Durante l'infissione viene misurata la pressione esercitata sulle aste di manovra per tratti pari a 20cm. I dati raccolti sono:

- la resistenza all'avanzamento della punta (Rp);
- la resistenza totale all'avanzamento della punta (Rp) e del manicotto (RI).

Dalle tali prove è possibile definire, mediante formulazioni e procedimenti empirici alla determinazione del profilo stratigrafico e all'attribuzione di opportune caratteristiche geomeccaniche dei terreni.

3.4 Indagini geognostiche (novembre e dicembre 2004)

Si tratta di una campagna di indagini svolta nel lotto Nord Ovest e comprende le seguenti indagini:

- 8 sondaggi con metodo di perforazione a rotazione con carotaggio continuo (S23, S24, S25, S26, S27, S28, S29 e S30);
- 14 prove CPT (da CPT5 a CPT15, e CPT17, CPT18 e CPT19).

Nell'immagine seguente si riporta in celeste la posizione planimetrica delle indagini svolte nel periodo di riferimento tra novembre e dicembre 2004.

Figura 3.20 In celeste l'ubicazione delle indagini nel periodo di riferimento

3.4.1 Sondaggi geognostici

Nel seguito si riportano:

- le schede stratigrafiche dei sondaggi S24, S25 e S28;
- le sezioni stratigrafiche C-C' e D-D'.

Per tutte le altre prove, sondaggi e prove penetrometriche, non sono disponibili i risultati ottenuti.

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA CLIENTE: INSULA S.p.a.

FOGLIO 28 di 133

mm	ttente:	ALISEA S.P	A. Sca	ala: 1:100			Sone	daggio N		
antie	re: Imp	pianto di small	imento RSU - Piave Nuovo Que	ota p.c. m s.l.m.:				2 22		
calit	a: Jes	OLO	Dat	ta inizio: 24/11/2004			5 23			
tta:	TERMO	EUGANEA S	A.S. Dat	ta fine: 25/11/2004			G	eologo		
etodo	o di perfe	orazione: a	rotazione con carotaggio continuo Rif.	file: alisea23.dbg						
Scala 1:100	Profondita'	Stratigrafia	Descrizione	Campioni	Pocket Pen	Vane Test	S.P.T.			
9-9	0.40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Terreno agrario limoso argilloso marrone	e						
1	0.90		Argilla marrone debolmente limosa							
-			Argilla marrone plastica							
2						0.50	0.30			
3	2.40	5 Ø x	Argilla grigia con frammenti di co	onchiglie e rari resti		0.40	0.10			
			vegetali			0.60	0.20			
4		4 9 6				0.00	0.20			
5					4.50 CA 5.10					
0						0.20	0.05			
7	6.70	1 4 4	Amilla grigia con eleveto	concentrazione di	ĺ	0.20	0.00			
	7.40	100 0	conchiglie	CONCENTRALIONE OI						
8			Argilla con molte conchiglie							
	8.30		Argilla molle con frammenti di conchigli	e						
9		1 0								
	9.50	a a	Limo deholmente sabbioso				0.45			
10	9.70	E	Arailla arigio chiaro con venstur	e ocra, plastica e		1.10	0.40			
11	10.40		compatta ("caranto")			0.40	0.15			
1		5553	Sabbia fine debolmente limosa	/		0.40	0.15			
12		222-2-3	Argilla grigia		12.00	0.50	0.20			
	10.00				CB					
13	12.60		Sabbia fine grigia con laminazioni limose	e	12.60					
14	13.50		Limo debolmente argilloso grigio							
			Alternanze di argilla limosa e limo argillo	oso grigi		1.40	0.40			
15	15.00				ĺ	1,40	0.40			
			Argilia grigia			0.40	0.20			
16	16.15		-			0.60	0.25			
17	16.40		Torba			0.90	0.35			
11	17.20	with the second	Argilla grigia	/		1.00	0.40			
18			Aroilla origia	/		1.00	0.45			
						0.40	0.15			
19						0.40				
	10.70									
20	20.10		Argilla con resti vegetali	1						
21	20.30	EBBB	Argilla grigia	1						
21	20.90		Torba Amillo arigio	7		0.80	0.20			
22	21.50		Torba			0.90	0.20			
	22.10	Real Property	Limo con laminazioni di limo argilloso gr	igio						
23	22.60		Limo argilioso grigio Argilla con torba	1						
	20.10		Argilla grigia limosa	1		0.80	0.30			
24			an - and a state metric spars from main a 2009 for \$1000			0.70	0.30			
25	24.60	~~~	Amilla origia							
20	25.10		Limo debolmente arailloso origio							
26	25.50		Argilla grigia con resti vegetali	-						
	26.15		Sabbia fine	/						
27			Argilla grigia con laminazioni limose	/						
	27.50					0.90	0.40			
28	27.90		Limo argilioso grigio			1.40	0.50			
20	28.40		Argilla torbosa perastra	/						
29	29.00		Sabbia fine limosa con laminazioni di lim	no		0.60	0.20			
		the second se		/		14.18.2	10.01			

Figura 3.21 Sondaggio S23

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA CLIENTE: INSULA S.p.a.

FOGLIO 29 di 133

mmi	ttente:	ALISEA S.F	P.A.	Scala: 1:100			Sc	ondaggio
ntier	e: Imp	ianto di smal	timento RSU - Piave Nuovo	Quota p.c. m s.l.m.:				S 24
calità	E JES	ULO (VE)		Data inizio: 16/12/2004				0
tode	di porf	reuganea S	a rotazione con carotacolo continuo	Data file: 1/12/2004		-		Geologo
.000	a perio			run me. ansea24.00g		_		10.
001.1	ldita'	Irafia					Test	
ocala	Profor	Stratig	2	Descu	Camp	Pocke	Vane	L L 10 20
1	0.50		Terreno agrario limoso argilloso Argilla limosa marrone con ocra	marrone n resti vegetali e venature	-			
2	1.60		Argilla a tratti limosa marr grigio nocciola verso il basso	rone-nocciola che diviene		1 70 -	0.80	
3	3.00	100	Argilla grigia con rare conchiglie			0.30	0.15	
4 5		4 4				0.00	0.10	
6								
8	7.25	- \- _#	Sabbla grigio scuro media e fine	3				7.50
9	9.00	1.0	Sabbia grossa con conchiglie					
10	9.80		Limo sabbioso grigio scuro					
11		EEEE	Argilla grigia		10.50			
	11.10		Sabbia fine con laminazioni di lu	mo origia	11.10			
12	11.65	[Arailla ariaia					
	12.00	N/	Sabbia fine grigia					
13	12.40		Alternanze di limo argilloso	o e sabbia fine con rare		1.40	0.50	
14			Argilla grigia	/		0.40	0.20	
15	14.80		Sabbia fine origia			0.00	0.00	
	15.40		Argilla grgia					
16	10.70	EEEE	Laminazioni di limo sabbioso e s	sabbia fine		1.80	0,80	
17	16.45	• • • • • • • • •	Argilla grigia	/	1	0.70	0.30	
	17.00		Argilla torbosa nerastra	/	1		0.00	
18		833	Argilla marrone scuro con resti v	/egetali		1.00	0.50	
19		ezzi	Argilla grigia	- /		0.50	0.25	
	_					0.70	0.30	
20	19.70	as as	Argilla grigia con resti vegetali					
21	20.30		Argilla grigia con rari resti vegeta	ali plastica		0.60	0.20	
-	20.90 21.00 21.20		Torba Sabbia fine limosa grigia	/				
22	21.50		Argilla grigia	/)			
23	22.40 22.60 23.00		Argilla con resti vegetali debolm Limo con laminazioni argillose	ente torbosa	1	- 0 ຄາ	0.20	
24			Argilla grigia Limo argilloso grigio			0.70	0.30	
25	24.50	* *	Argilla grigia Argilla con locali resti vegetali					
26	26.10		Argilla limosa grigia					
27	26.40		Sabbia grigia	,	7			
	27.00		Argilla limosa	/	/	0.50	0.05	
28	28.15		Laminazioni di limo e argilla grig	i /		0.00	0.00	
29	28.35		Torba	/	1			
20		and the second sec						

Figura 3.22 Sondaggio S24

FILE NR. 17089G1200B.doc

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA CLIENTE: INSULA S.p.a.

FOGLIO 30 di 133

ommit	tente:	ALISEA S.P	A.	Scala: 1:100			Sc	ndaggio N
antiere	: Imp	anto di smali	Imento RSU - Piave Nuovo	Quota p.c. m s.l.m.: Data inizio: 18/11/2004				S 28
itta: 1	ERMC	EUGANEA S	.A.S.	Data fine: 19/11/2004			8	Geologo
etodo	di perfe	prazione:	a rotazione con carotaggio continuo	Rif. file: alisea28				
Scala 1:100	Profondita'	Stratigrafia	Descrizione	Campioni	Pocket Pen	Vane Test	S.P.T.	
		A.	Sabbia fine limosa e argillosa	marrone con resti ve-				10 20 3
1	0.00		getall (terreno agrano) Sabbla medio-fina marrone con ti limosa	n venature ocra, a trat-				
3	2.60		Sabbia fina grigia limoso argilla a tratti più fortemente argillosa, rari frammenti di conchiglie mi abbondanti frammenti di conchiglie	osa con resti vegetali, . A partire da 5.00 m Illimetrici. Oltre 6.50 m				
6					6.00 -			
7 8	6.70	4 9 8	Argilla grigia plastica con fram primi 20 cm	menti di conchiglie nei	R1 7.50 -	0.50	0.20	
9	9.00	0.000	Accumulo di frammenti di co	onchiglie millimetrici e		0.00	0.20	
10	9.80	48 5 98	centimetrici, in matrice argilloso-sabl	biosa grigia		1.00	0.35	
11	10.20 10.50		Argilla limosa grigio-verde molto dura	10.50 C1	2.20	1.00		
	11.10		campione Sabbia fine origia	11.10				
12 13 14	12.00		Argilla grigia molle con laminazi ne. Presenza di livelletti torbos 16.45 e 16.50 m, 17.00 e 17 presenza di fitte laminazioni lit di colore grigio-marrone	oni dilimo e sabbia fi- i tra 13.10 e 13.20 m, 7.30 m. Oltre 17.60 m mose e l'argilla diviene		1.40 - 1.20 -	0.50	
15								
16						0.50	0.20	
17						1.00	0.50	19.00
19	18.00		Sabbia fine grigia			2.00	0.90	18.45
20	20.00	~~~	Argilla limosa torbosa grigio marrone)				
21	21.00	~~~~	Sabbia fine grigia					
22	21.80		Argilia limosa grigia					
	22.25		orba marrone scuro Argilla grigia con rare laminazioni lim	nose				
23	22.80		Limo e limo argilloso grigio					
	24 70		Argilla grigia limosa			0.50	0.20	
25	25.00		Argilla limosa torbosa marrone e grig Argilla limosa grigia con resti vegetal	jia		0.90	0.45	
26	26.00		Argilla marrone e grigia ricca di torba	a				
27	27 00		Sabbia fine, a tratti debolmente limos	sa				
20	27.00		Limo, limo argilloso e argilla limosa g	grigi		0.50 1.00	0.30 0.30	
28	28.10 28.50		Sottili laminazioni di limo, argili grigi Argilia molle grigia con resti vegetali	a limosa e sabbia fine \		condition .		
29	29.00	====	A millione grigia con resultagetail					

Figura 3.23 Sondaggio S28

Figura 3.24 Sezione stratigrafica C-C'

Figura 3.25 Sezione stratigrafica D-D'

Figura 3.26 Legenda dei terreni presentati nelle stratigrafie

3.5 Indagini geognostiche (giugno 2005)

Si tratta di 4 sondaggi eseguiti con macchina Puntel Px310 secondo metodo di perforazione a carotaggio continuo Φ101mm.

Si considerano 2 sondaggi, S28bis e S28ter, in corrispondenza del sondaggio S28 eseguito nel dicembre 2004; nell'immagine si riporta la posizione planimetrica delle due prove. Tali sondaggi, spinti ad una profondità di 5m dal p.c., hanno lo scopo di accertare l'estensione della lente sabbiosa rilevata in prossimità del sondaggio S28; per tale motivo i due sondaggi di verifica sono posizionati a 2m di distanza dal sondaggio di riferimento.

Figura 3.27 Ubicazione dei sondaggi S28bis e ter in corrispondenza di S28

Tutti e 3 i sondaggi dell'immagine sopra riportata sono stati georeferenziati sulle coordinate Gauss -Boaga fuso Ovest; si riportano per ciascuno di essi latitudine e longitudine.

Sondaggi	COORDINATE GAUSS BOAGA FUSO OVEST						
	Latitudine	Longitudine					
S28	5053054.02	1784591.66					
S28bis	5053054.43	1784589.70					
S28ter	5053055.97	1784592.12					

Si considerano 2 sondaggi PZ1 e PZ2 eseguiti con lo scopo di valutare non solo gli orizzonti stratigrafici della zona, ma anche di studiare la qualità delle acque. Per questo motivo, all'interno dei fori sono stati installati due tubi piezometrici del diametro di 3 pollici; in particolare:

- in PZ1 il tubo ha una lunghezza di 9.5m, è microfessurato tra 7.5m e 9.5m da pc., mentre è cieco al di sopra dei 7.5m di profondità;
- in PZ2 il tubo ha una lunghezza di 8.0m, è microfessurato tra 5.0m e 8.0m da p.c., mentre è cieco al di sopra dei 5.0m di profondità.

La parte sommitale dei piezometri è stata chiusa con il tappo in pvc e la testa del piezometro, posta sotto il p.c. è protetta da un pozzetto in ferro con chiusino, infisso nel cemento bentonitico per 30cm sotto il p.c.

3.5.1 Sondaggi geognostici

Nelle seguenti immagini si riportano le schede stratigrafiche delle prove eseguite. I sondaggi S28bis e ter non evidenziano la presenza di livelli sabbiosi entro 5m da piano campagna. Per questo motivo si può supporre una errata interpretazione della stratigrafia relativa al sondaggio S28; l'orizzonte incoerente individuato da S28 è comunque uno strato di sabbia fine limosa argillosa a tratti più fortemente argillosa.

Prove in sito e Indagini Geognostiche Ricerche d'acqua Laboratorio Geotecnico Controlli e Monitoraggi Strutturali

COMMITT	ENTE: Alisea	SpA			Sondage	gio 28	bis	
CANTIERE	: Discarica cor	trollata Piav	e Nuo	vo Jesolo				
Data: 7 (Giugno 2005	Attrezzatura	a: Punt	el PX 310 Metodo di perfe	orazione: Carotaggio continuo ø	101mm		
profondità (m)	stratigrafia	tipo pro- ordet pen.	kg/cmq kg/cmq	DESCRI	ZIONE	LEGENDA Indisturbato	Livello acqua	
1,0 0.8 2,0 2.0 3,0 2.8 4,0 5,0 5.0		3.00 A 3.50 0.5 0.5	>1 0.30 0.35 0.22 0.24 0.16 0.18 0.18	Limo argilloso nocciola Argilla limosa nocciola con macc sabbioso grigio Limo debolmente argilloso debol Argilla debolmente limosa grigia r	hie oera e grigie hie oera e grigie, frequenti veli e livelli ee mente sabbioso: rari frammenti di conchig rari resti vegetali	ntimetrici di limo	Acqua a -1,15 m da p.c. il 6.6.2005	

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

CLIENTE: INSULA S.p.a. FOGLIO 35 di 133

Prove in sito e Indagini Geognostiche Ricerche d'acqua Laboratorio Geotecnico Controlli e Monitoraggi Strutturali

COMN	AITTE	NTE: Alisea	SpA				Sondag	gio 28	ter	
CANT	TERE	Discarica con	itrollata I	Piave	Nuo	vo Jesolo				
Data:	7 G	iugno 2005	Attrezza	tura:	Punt	el PX 310 Metodo di perfe	orazione: Carotaggio continuo e	5 101mm		
profo (m p.c.	ndità	stratigrafia	campioni orn°_n fondità	pocket pen. kg/cmq	Torvane kg/cmq	DESCRI	ZIONE	LEGENDA Indisturbato	Livello acqua	
1,0 2,0 3,0 4,0 5,0	1.00 3.00 3.50			3 1.4 1.5 1.4 1.5 0.6 0.7 0.6 	>1 0.26 0.24 0.20 0.18 0.17 0.20 0.18	Limo argilloso nocciola Argilla limosa nocciola con macc Limo argilloso grigio con veli e li Argilla debolmente limosa grigia.	hie ocra e grigie velli centimetrici di limo sabbioso a 3,80-4,30m frammenti di conchiglie		Acqua a -1,20 m da p.c. il 6.6.2005	

Figura 3.29 Sondaggio S28ter

Per quanto concerne i risultati circa la qualità delle acque rinvenute mediante le prove PZ1 e PZ2, si rimanda alla "Relazione sulla qualità delle acque – Cod. Rif. Int. 1300/1" redatta nel Luglio 2005. Si riportano nel seguito le stratigrafie individuate per PZ1 e PZ2. Il livello di falda si colloca a 1.05m da p.c. in PZ1 e a 0.85m da p.c. in PZ2.

FILE NR. 17089G1200B.doc

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA CLIENTE: INSULA S.p.a.

FOGLIO 36 di 133

RCR S.n.c. di G. Cibin & C. via E.Mattei, 11/N - Due Carrare (Pd) tel. - fax 049 9125994 e.mail rcrsnc1@libero.it Prove in sito e Indagini Geognostiche Ricerche d'acqua Laboratorio Geotecnico Controlli e Monitoraggi Strutturali

COMN	AITTE	ENTE: Alisea	Sp	A				Sondaggio PZ 1				
CANT	TERE	: Discarica con	tro	llata F	Piave	Nuo	vo Jesolo		0			
Data:	6 G	iugno 2005	A	ttrezza	tura:	Punt	el PX 310 Metodo di perfe	orazione: Carotaggio continuo o	ə 101mm			
profo (m p.c.	ndità)	stratigrafia	car odit	n°∕ pro- fondità	pocket pen. kg/cmq	Torvane kg/cmq	DESCRI	ZIONE	LEGENDA Indisturbato	Livello acqua	Piezometro	a tubo cieco ø 3"
		~ ~ ~ ~ ~ ~ ~ ~				S	Limo debolmente sabbioso noccio	la				
1,0	1,50				>3	> 1	Limo argilloso nocciola	ana asisis mutilina asilasa		15		
2,0		ج ج ج			1,6	> 1	Argina ilmosa nocciola con bande	e ocra e grigie a tratti nimo arginioso		p.c. il 6.6.200		
3,0		222			1,4	0,40				1 a -1,05 m da		
	3.60	$\sim \sim$		3,50	1,1	0,32	Arailla debolmente limosa ariaia	con veli e livelli centimetrici di limo aro	illoso e limo	Acqua		
4,0		~~~		A 4,00	0,6	0,22	debolmente sabbioso	con ven e nvem centinearer a niño arg	nioso e nino			bo cieco
					0,5 0,6	0,20						tu
5,0					0,7	0,22						
		\sim			0,6	0,24						
6,0	6,30	$\sim \sim$					Limo argilloso grigio con veli e li	velli centimetrici di limo sabbioso				
					0,7	0,28						
7,0	7,70				0,8	0,30	Limo da debolmente sabbioso a sa	abbioso erigio, a tratti sabbia fine limosa	: a 9.20-9.40			
8,0							presenza di frammenti di conchigi	Pozzetto ca	rabile			rofessurato
9,0	9,40	\$ \$					Argilla limosa nera; frequenti rest	i vegetali e macchie torbose	multipli s			tubo mici
10,0	10,00				1,2 1,2	0,32 0,38						-9,5m

Figura 3.30 Sondaggio PZ1

FILE NR. DELI 17089G1200B.doc

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA CLIENTE: INSULA S.p.a.

FOGLIO 37 di 133

Prove in sito e Indagini Geognostiche Ricerche d'acqua Laboratorio Geotecnico Controlli e Monitoraggi Strutturali

COMN	AITTE	NTE: Alisea	Sp	A				Sondag	gio	ΡZ	2		
CANT	IERE:	Discarica con	ntro	llata I	Piave	Nuo	vo Jesolo						
Data:	6 G	iugno 2005	A	ttrezza	tura:	Punt	el PX 310 Metodo di perf	orazione: Carotaggio continuo ø	101mr	n			
profo (m p.c.	ndità)	stratigrafia	cai odji	n°/ pro- fondità	pocket pen. kg/cmq	Torvane kg/cmq	DESCRI	ZIONE	LEGE Indist	NDA urbato	Livello acqua	i	Piezometro a tubo cieco ø 3"
	0.05	*****					Limo debolmente sabbioso noccio	ola					
	0,35	$\sim \sim$					Argilla limosa nocciola						
	0,85	\sim			>3	> 1	Limo argilloso nocciola con band	e ocra e grigie. a tratti argilla limosa; freq	uenti veli	e livelli			
1,0					1,2	0,40	centimetrici di limo debolmente s	abbioso					
					1,0	0,45					2005		
2,0											1 6.6.		
					1.0	0,46					p.c. i		ieco
	2,50	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					Limo argilloso nocciola con band	e ocra e grigie. a tratti argilla limosa; freq	uenti veli	e livelli	n da		bo c
					1,0	0,28	centimetrici di limo debolmente s	abbioso; presenza di livelli organici e tort	oosi		0,85r		t I
3,0	3,00	*****					Argilla debolmente limosa grigia	con macchie e livelli torbosi; torba fibros	a a 3,00-3	,05m e	a a -		
				2.50	0,6	0,18	a 4,05-4,10m				Acqu		
[I. NN		3,50 A	0.5	0.20							
4,0				4,00	0,0	0,20							
		NN			0,5	0,18							
		NV											
5.0		.1			0,6	0,18							
5,0	5,20						Areilla limosa erieia, a tratti limo	argilloso: frequenti livelli (5-7cm) di lim	o sabbios	0.6		E	-5,0m
		NN			0,5	0,16	sabbia fine limosa					E	
					0,5	0,18						E	5
6,0	6,10				0,6	0,18	Limo argilloso grigio con veli e	livelli centimetrici di limo sabbioso, pres-	enza di re	sti			ssura
					0,6	0,20	regeran					E	rofes
					0,7	0,22						E	micı
7.0			1			0.16						E	nbo
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.20		:		0,6	0,18						E	
	7,30						Limo debolmente sabbioso deboli	mente argilloso grigio, a tratti sabbia fine	limosa			E	
												E	
8,0	8,00	<i></i>										E	-8,0m
								Pozzetto carrabile	ippo VC				

Figura 3.31 Sondaggio PZ2

3.6 Indagini geognostiche (agosto 2017)

Si tratta di una campagna di indagini atta ad investigare i parametri geotecnici del corpo rifiuti della discarica nel lotto sud ovest. Le attività di indagine comprendono:

- 6 prove penetrometriche statiche elettriche con piezocono (da CPTU1 a CPTU6) da eseguirsi all'interno del corpo rifiuti spinte alla profondità di 5.0m da p.c.;
- 6 prove di dissipazione della pressione interstiziale da eseguirsi nel corso delle prove penetrometriche, in corrispondenza del corpo rifiuti;
- rilievo plano-altimetrico dei punti di indagine e restituzione su base cartografica.

I risultati principali delle indagini sono reperibili nel doc. "Relazione descrittiva delle indagini in situ" redatto dal Dott. Ing. Davide Splendore nell' Agosto 2017 e nei relativi allegati

Nella seguente immagine satellitare si riporta l'ubicazione dei punti delle prove.

Figura 3.32 Ubicazioni delle prove effettuate nell'agosto 2017

Le prove penetrometriche sono state eseguite mediante penetrometro statico semovente Pagani TG63-200 con dispositivo di spinta da 200kN; sotto la spinta di pistoni idraulici una batteria d'aste infigge nel terreno la punta standardizzata dello strumento ad una velocità costante pari a 2cm/s. In questo modo

si misura con relativa continuità lo sforzo di punta Qc e l'adesione latereale fs e la pressione u dell'acqua nei pori del terreno in funzione della profondità. Le prove di dissipazione sono state effettuate lungo tutta la verticale, con particolare attenzione in corrispondenza del corpo rifiuti.

Per ciascun punto prova sono state determinate le coordinate piane Gauss Boaga Fuso Est e le quote altimetriche in metri rispetto al caposaldo a quota zero presente nell'area di discarica in corrispondenza della pesa. L'assenza di ostacoli all'interno della discarica, ha consentito un'ottima copertura satellitare e quindi una determinazione molto precisa delle coordinate dei punti da studiare. Nella tabella seguente si riportano le coordinate plano – altimetriche delle prove CPTU.

NOME	DESCRIZIONE	WGS84 NORD (N.C.)	WGS84 EST (N.C.)	GB/ROMA40 F.E. N	GB/ROMA40 F.E. E	QUOTA s.l.m. (m)
CPTU1	Penetrometria	45°34'20.25863"N	12°38'49.03210"E	5049243.696	2336405.279	0.536
CPTU2	Penetrometria	45°34'21.33764"N	12°38'53.34511"E	5049274.254	2336499.737	0.282
CPTU3	Penetrometria	45°34'19.05732"N	12°38'50.80149"E	5049205.497	2336442.541	0.686
CPTU4	Penetrometria	45°34'15.06770"N	12°38'53.53582"E	5049080.635	2336498.197	0.479
CPTU5	Penetrometria	45°34'14.31689"N	12°38'50.94138"E	5049059.113	2336441.282	0.216
CPTU6	Penetrometria	45°34'19.90574"N	12°38'54.77758"E	5049229.153	2336529.489	-0.842

Figura 3.33 Coordinate plano – altimetriche delle prove

3.6.1 Prove penetrometriche statiche CPTU

Nella tabella seguente si riportano le profondità raggiunte da ciascuna prova CPTU.

Tabella 3.2 Profondità raggiunte per ciascuna CPTU

	CPTU 1	CPTU 2	CPTU 3	CPTU 4	CPTU 5	CPTU 6
da p.c. [m]	-5.90	-4.90	-5.93	-5.93	-4.90	-5.90

Nel seguito si riportano, per ciascuna prova CPTU gli orizzonti stratigrafici ed i principali risultati. Per una migliore comprensione si rimanda al documento di riferimento.

Nelle tabelle seguenti si riporta per ciascuna prova CPTU gli orizzonti stratigrafici rilevati.

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

Tabella 3.3 CPTU1 da quota +0.536m s.l.m.

da [m]	a [m]	unità stratigrafica
p.c.	-0.30	Terreno di riporto limoso sabbioso piuttosto addensato
-0.30	-1.55	Terreno di riporto argilloso consistente
-1.55	-1.80	Terreno di riporto argilloso
-1.80	-5.60	Rifiuto
-5.60	-5.90	Argilla soffice

Figura 3.34 Prova penetrometrica CPTU1

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

Tabella 3.4 CPTU2 da quota +0.282m s.l.m.

da [m]	a [m]	unità stratigrafica
p.c.	-0.40	Terreno di riporto limoso sabbioso piuttosto addensato
-0.40	-1.30	Terreno di riporto argilloso consistente
-1.30	-2.10	Terreno di riporto argilloso
-2.10	-2.60	Rifiuto
-2.60	-3.30	Terreno di riporto argilloso
-3.30	-3.60	Rifiuto
-3.60	-4.90	Argilla soffice

Figura 3.35 Prova penetrometrica CPTU2

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

Tabella 3.5 CPTU3 da quota +0.686m s.l.m.

da [m]	a [m]	unità stratigrafica
p.c.	-0.35	Terreno di riporto limoso sabbioso piuttosto addensato
-0.35	-1.10	Terreno di riporto argilloso consistente
-1.10	-2.85	Terreno di riporto argilloso talora limoso
-2.85	-4.40	Rifiuto
-4.40	-5.93	Argilla soffice

Figura 3.36 Prova penetrometrica CPTU3

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

Tabella 3.6 CPTU4 da quota +0.479m s.l.m.

da [m]	a [m]	unità stratigrafica
p.c.	-0.30	Terreno di riporto limoso sabbioso piuttosto addensato
-0.30	-1.15	Terreno di riporto argilloso consistente
-1.15	-3.10	Terreno di riporto argilloso talora limoso
-3.10	-5.85	Rifiuto
-5.85	-5.93	Argilla soffice o rifiuto

Figura 3.37 Prova penetrometrica CPTU4

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

Tabella 3.7 CPTU5 da quota +0.216m s.l.m.

da [m]	a [m]	unità stratigrafica
p.c.	-0.35	Terreno di riporto limoso sabbioso piuttosto addensato
-0.35	-1.20	Terreno di riporto argilloso consistente
-1.20	-2.55	Terreno di riporto argilloso
-2.55	-3.95	Rifiuto
-3.95	-4.90	Argilla soffice

Figura 3.38 Prova penetrometrica CPTU5

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

Tabella 3.8 CPTU6 da quota -0.842m s.l.m.

da [m]	a [m]	unità stratigrafica
p.c.	-0.20	Terreno di riporto limoso sabbioso piuttosto addensato
-0.20	-0.65	Terreno di riporto argilloso consistente
-0.65	-5.90	Argilla soffice

Figura 3.39 Prova penetrometrica CPTU6

3.6.2 Prove di dissipazione

Le prove di dissipazione sono state effettuate alle seguenti profondità.

Tabella 3.9 Profondità delle prove di dissipazione

	CPTU 1	CPTU 2	CPTU 3	CPTU 4	CPTU 5	CPTU 6
	(D1)	(D1)	(D1)	(D1)	(D1 / D2)	(D1)
da p.c. [m]	-5.20	-3.22	-5.12	-5.84	-0.90 / -4.20	-3.07

Le prove di dissipazione eseguite in corrispondenza del rifiuto evidenziano una permeabilità dei terreni dell'ordine di 10⁻⁶ m/s, mentre in corrispondenza delle argille plastiche, presenti sul letto dei rifiuti, hanno permeabilità molto basse, dell'ordine di 10⁻⁹ m/s.

3.7 Modello geotecnico di riferimento

Sulla base delle campagne di indagini condotte nell'area oggetto di studio è stato possibile definire una stratigrafia media da adottare nei principali modelli di calcolo presenti in questo lavoro. Tale stratigrafia coincide in tutto e per tutto a quella presente nel documento "Elaborato B – Relazione Geologico-Geotecnica" e qui sotto illustrata.

Prof s.l.m. [m]	Stratigrafia	γ [kN/m³]	γ _{sat} [kN/m³]	Φ' [°]	c' [kPa]	c _u [kPa]	E _{ed} [MPa]	E₅ [MPa]
p.c. ÷ -2.8	Argilla più o meno limosa con sottili livelli sabbiosi	18.83	18.83	24.4	16.7	19.0	2.0	-
-2.8 ÷ -3.8	Argilla riportata	18.82	19.70	24.0	18.0	45.0	4.8	-
-3.8 ÷ -5.5	Argilla più o meno limosa con sottili livelli sabbiosi	18.83	18.83	24.4	16.7	19.0	2.0	-
-5.5 ÷ -7.5	Sabbia fine con percentuale variabile di limo	18.55	18.55	33.5	8.0	-	-	12.7
-7.5 ÷ -9.0	Argilla più o meno limosa con sottili livelli sabbiosi	18.83	18.83	24.4	16.7	19.0	2.0	-
-9.0 ÷ -10.0	Argilla da consistente a molto consistente	20.21	20.21	-	-	80.0	5.0	-
-10.0 ÷ -11.7	Sabbia fine con percentuale variabile di limo	18.55	18.55	33.5	8.0	-	-	12.7
-11.7 ÷ -20.0	Argilla e limi argillosi talora con livelli torbosi	19.77	19.77	23.7	12.0	60.0	3.1	-

|--|

Al fine di considerare, nel Lotto Sud Ovest, la presenza di un primo strato di riporto ed un successivo formato da rifiuti (3m circa), evidenziati dai sondaggi eseguiti nell'agosto 2017, si è reso necessario modificare i parametri geotecnici dei primi 2 strati di terreno. Nella tabella seguente si riportano le caratteristiche meccaniche degli strati di riporto, dei rifiuti vecchi posti al di sotto del piano campagna e di quelli nuovi per il completamento della discarica. Da quota -5.0m s.l.m. riprende la stratigrafia definita nella tabella precedente.

Prof s.l.m. [m]	Stratigrafia	γ [kN/m³]	γ _{sat} [kN/m³]	Φ' [°]	c' [kPa]	c _u [kPa]	E _{ed} [MPa]	Es [MPa]
p.c. ÷ -2.0	Strato di riporto	19.00	19.00	30.0	1.0	-	-	8.7
-2.0 ÷ -5.0	Rifiuti vecchi sotto p.c.	10.00	10.00	22.0	3	-	-	1.0
-5.0 ÷ -5.5	Argilla più o meno limosa con sottili livelli sabbiosi	18.83	18.83	24.4	16.7	19.0	2.0	-
-	Rifiuti nuovi da coltivare	8.00	8.00	30.0	10	-	-	0.5

Tabella 3.11 Parametri geotecnici degli strati di riporto e dei rifiuti

4 GEOMETRIA DEL PROBLEMA

Nelle immagini seguenti si riportano le sezioni degli argini Nord, Sud e dell'Argine di contenimento studiate nel presente lavoro. Gli argini Nord e Sud, carrabili in sommità dai mezzi di lavoro, raggiungono quota +6.00m s.l.m. e differiscono solamente per la pendenza della scarpata lato di valle, ovvero quella non interessata dalla coltivazione dei rifiuti: per l'argine Sud la scarpata è di 1.75:1, mentre per l'argine Nord, dovendo garantire una pista di transito per le macchine operatrici, si prevede una scarpata più dolce, ovvero di 10:1. L'Argine di contenimento, invece, raggiunge quota +5.00m s.l.m., ha scarpate con pendenza di 1.75:1 e non è transitabile da mezzi di lavoro e veicoli.

Figura 4.1 Sezione arginale Sud

Figura 4.2 Sezione arginale Nord

Figura 4.3 Sezione Argine di contenimento

Si fa notare che alla base e alla sommità del corpo discarica si inseriscono rispettivamente un pacchetto di fondo, spesso 1.5m, ed uno di copertura, spesso 2.5m. Per la successione degli strati drenanti ed impermeabili che formano gli strati di fondo e di copertura si rimanda ai dettagli delle tavole di progetto.

Nella tabella seguente si riportano i parametri geomeccanici caratteristici dei seguenti materiali "artificiali" che completano il sistema da analizzare: materasso impermeabile, materasso drenante, corpo arginale, strato di copertura.

Materiale	γ [kN/m³]	E [MPa]	c' [kPa]	Φ[°]
Argine	19.0	20.0	7.0	35
Materasso drenante	19.0	8.0	0.1	32
Materasso argilloso	19.0	3.0	10.0	24
Copertura discarica	19.0	5.0	5.0	32

Tabella 4.1 Parametri geomeccanici dei materiali "artificiali" che completano il sistema

5 MODELLAZIONE CON SLIDE

Il software di calcolo Slide ha consentito di ricavare i coefficienti di sicurezza per la stabilità globale del sistema nelle condizioni sismica e statica.

5.1 Codice di calcolo impiegato

Per lo studio di stabilità globale, la valutazione dei fattori di sicurezza è stata condotta mediante un programma di calcolo, denominato "SLIDE", redatto a cura di Rocscience Inc., Indiana, 1986. Il programma rappresenta un pre e post processore del codice STABL (R.A. Siegel, 1975) e STABL4 (C.W. Lovell, S.S. Sharma, J.R. Carpenter, 1984) sviluppati nella School of Civil Engineering, Purdue Univ., West Lafayette, Indiana, 1986, ed è largamente utilizzato sia nella ricerca che in campo progettuale.

In particolare viene utilizzato il metodo dei conci per la ricerca del coefficiente di sicurezza alla stabilità globale F. Tale coefficiente è un indice della stabilità del pendio in oggetto ed è definito come il rapporto tra la somma delle forze (o dei momenti) risultanti che tendono a opporsi al movimento della massa, e la somma delle forze risultanti destabilizzanti che tendono a provocarlo, cioè:

Le forze agenti sono le componenti tangenziali del peso proprio della massa e degli eventuali sovraccarichi superficiali agenti sulla superficie di scivolamento, mentre le forze resistenti sono le resistenze al taglio mobilitate nei vari punti di detta superficie che dipendono dagli sforzi normali applicati e dalla resistenza al taglio locale del suolo, espressa in termini del criterio di rottura Mohr-Coulomb.

Per procedere con il calcolo di F la massa potenzialmente instabile viene suddivisa in conci. Su ogni concio vengono valutate singolarmente le forze agenti e resistenti. L'insieme delle forze agenti sul concio singolo è presentato nella figura seguente.

SOCIETA' DI INGEGNERIA GEOTECNICA E STRUTTURALE LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA CLIENTE: INSULA S.p.a. FILE NR. 17089G1200B.doc

dove:

h	=	altezza media del concio
Δ_{+}	=	larghezza del concio
α ;β	=	inclinazione delle superfici inferiore e superiore rispetto all'orizzontale
Δ _Q	=	risultante dei carichi distribuiti sulla superfice, inclinati di un angolo qualsiasi δ rispetto alla verticale
Δ _{uα} ; Δ _{uβ}	=	risultante della pressione neutra sulle facce inferiore e superiore
Δ _w	=	peso totale del concio
Х	=	azione di taglio verticale tra i conci
Δ _x	=	incremento dell'azione tagliante verticale
E	=	forza orizzontale agente sulla superfice verticale del concio
ΔE	=	incremento della forza orizzontale
k _h + k _v	=	coefficienti moltiplicatori del peso ∆ _w per tener conto di eventuali sollecitazioni sismiche orizzontali e verticali
Sr	=	risultante delle azioni tangenziali agenti alla base del concio
N'	=	sforzo normale agente alla base

Figura 5.1 – Forze agenti sul singolo concio

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

Le forze sono W=Peso del concio, S=Forza di taglio mobilitata sulla base del concio, P=Forza peso normale alla base del concio, U=Forza esercitata dal carico idraulico agente sulla base, T=Forza verticale laterale al concio, E=Forza orizzontale laterale al concio.

Le forze T ed E di interazione tra i conci adiacenti rimangono solitamente incognite. Nelle procedure di calcolo più rigorose esse non vengono trascurate, tuttavia vengono fatte alcune assunzioni per permettere ugualmente la risoluzione della (1). Le varie procedure di calcolo nell'ambito del metodo dell'equilibrio limite si diversificano proprio per il tipo di assunti per eliminare alcune incognite nella equazione che permette il calcolo di F. Tale equazione deve essere risolta sempre in modo iterativo, essendo espressa in forma implicita con l'incognita (F) in entrambi i membri, assumendo un valore di tentativo iniziale per F nel membro di destra e ripetendo i calcoli fino a convergenza quando la differenza tra i due F diventa minore di un certo valore assunto.

Quando tutti i parametri di interesse sono noti si passa al calcolo di F. L'algoritmo di calcolo può implementare uno dei diversi metodi esistenti nell'ambito dei modelli dell'equilibrio limite. I procedimenti di calcolo avvengono in modo iterativo, come già visto in precedenza, facendo uso di espressioni del tipo della (1). I vari metodi, BISHOP (1955), MORGENSTERN & PRICE (1965), SPENCER (1967), JANBU (1954), JANBU (1973) sono tutti riconducibili al " General equilibrium method" di FREDLUND et al. (1981), abbreviato con GLE. Questi metodi si diversificano in base alle assunzioni e semplificazioni fatte per ridurre il numero delle incognite nel problema, tuttavia come mostrato in numerosi studi comparativi DUNCAN & WRIGHT (1980), FREDLUND et al. (1981), la differenza percentuale tra i valori di F calcolati generalmente non supera il 10%, il che è perfettamente compatibile con il grado di incertezza insito in tale tipo di analisi.

Valori di F minori od uguali ad 1 sono indicativi di condizioni di instabilità, mentre per valori maggiori di 1 le condizioni sono a favore della stabilità. Questo è il concetto di base di tutti i modelli per la verifica di stabilità che si rifanno al concetto dell'equilibrio limite.

F deve essere valutato entro un preciso riferimento spaziale. E` perciò necessario considerare una potenziale superficie di scorrimento nella massa del pendio e valutare tutte le forze agenti e resistenti su detta superficie. In pratica, essendo infinite le superfici di scivolamento possibili, F viene valutato per ognuna delle superfici di un campione rappresentativo, generate con un certo criterio.

In tal modo il fattore di sicurezza F del pendio sarà quello che compete alla superficie di scorrimento con F più basso. Tale superficie è detta anche superficie critica. Una superficie di scivolamento assunta divide in due parti distinte il pendio. Superiormente abbiamo una massa potenzialmente instabile supposta rigida e inferiormente una massa rigida stabile.

Nel codice di calcolo Slide, in accordo con la combinazione A2+M2+R2, si de-magnificano le caratteristiche di resistenza dei terreni secondo i coefficienti M2 e si amplificano i carichi secondo i coefficienti A2. In questo modo si conduce la verifica di stabilità globale, nel rispetto del coefficiente minimo di sicurezza richiesto pari a γ_{R2} = 1.1. In questo lavoro i coefficienti di sicurezza si determinano nella fase finale di costruzione arginale e con i seguenti metodi di calcolo:

- Bishop semplificato;
- Morgenstern e Price;
- Janbu semplificato;
- Spencer.

5.2 Unità stratigrafiche

Tutti i terreni sono stati simulati con modello costitutivo del tipo Mohr-Coulomb di tipo drenato con parametri c' e Φ ' ad eccezione dello strato di argilla da consistente a molto consistente che è stato simulato con il parametro di resistenza al taglio non drenata cu.

La verifica di stabilità globale è stata effettuata secondo l'Approccio A2+M2+R2, quindi i parametri meccanici dei terreni riportati nel capitolo geotecnico, sono stati opportunamente ridotti con i coefficienti della categoria M2 (Tabella 6.2.II delle NTC 2008).

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		124 1411
	COEFFICIENTE PARZIALE	γM		
Tangente dell'angolo di	tan φ' _k	γφ	1,0	1,25
resistenza al taglio				
Coesione efficace	c' _k	Ye	1,0	1,25
Resistenza non drenata	c _{uk}	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Figura 5.2 Coefficienti parziali per i parametri geotecnici dei terreni

Nelle tabelle seguenti si riportano i parametri geomeccanici di progetto inseriti nel codice di calcolo.

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

CLIENTE: INSULA S.p.a.

FOGLIO 53 di 133

Tabella 5.1 Parametri geomeccanici di progetto dei materiali inseriti in Slide

Materiale	γ _d [kN/m³]	c' _d [kPa]	cu _d [kPa]	Φ _d [°]
Strato di riporto	19.0	0.8	-	24.8
Rifiuti nuovi	8.0	8.0	-	24.8
Rifiuti vecchi	10.0	2.4	-	18.0
Argilla più o meno limosa	18.8	13.4	-	19.9
Sabbia fine	18.6	6.4	-	27.9
Argilla consistente	20.2	-	57.1	-
Argilla e limi argillosi	19.8	9.6	-	19.4
Argine	19.0	5.6	-	29.3
Materasso drenante	19.0	0.1	-	26.6
Materasso argilloso	19.0	8.0	-	19.6
Capping finale	19.0	4	-	26.6

Name: A1

Strength Type: Mohr-Coulomb

Г

Strength Parameters

Cohesion:

SOCIETA' DI INGEGNERIA GEOTECNICA E STRUTTURALE

FILE NR. 17089G1200B.doc

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

CLIENTE: INSULA S.p.a.

FOGLIO 54 di 133

Name: SUP	Colour:	→ H	atch:
Unit Weight:	19 kN/m3 🗆	Saturated U.V	w. 20 kN/m
New all Times Mak	r Coulomb 🖉	$\tau = \ell' + \sigma'$	tan <i>d</i> i
Strength Type: Moh	ır-Coulomb ▼	$\tau = c' + \sigma'_i$, tan φ΄ 15
Strength Type: Moh Strength Parameter Cohesion:	r-Coulomb - s	$\tau = c' + \sigma'$, tan φ

Figura 5.3 Strato di riporto

13.4 kN/m2

Figura 5.6 Argilla più o meno limosa

Colour: 🗸 Hatch: 🗸 Unit Weight: 18.8 kN/m3 🔲 Saturated U.W. 20 kN/m3

 $\bullet \quad \tau = c' + \sigma'_n \tan \phi'$

Phi:

RIFIUTI VECCHI Material 12 Material 13 Material 13	_
Name: BIFIUTI VECCHI Colour: VecCHI V	
Unit Weight: 10 kN/m3 🗖 Saturated U.W. 20 kN/m2	
Strength Type: Mohr-Coulomb $~~ \mathbf{\tau} = \mathbf{c}' + \sigma'_n \tan \phi'$	
Strength Parameters	ź
Cohesion: 2.4 kN/m2 Phi: 18 degrees	

Figura 5.4 Pifiuti vecchi

12 19.9 degrees

Figura 3.4 Kindu vecchi
Name: S1 Colour: Vane: Hatch: Vane: Vane: S1
Unit Weight 18.6 kN/m3 Saturated U.W. 20 kN/m3
Strength Type: Mohr-Coulomb \bullet $\tau = c' + \sigma'_n \tan \phi'$
Strength Parameters
Cohesion: 6.4 kN/m2 Phi: 27.9 degrees

Figura 5.7 Sabbia fine

A3 AGINE DRENANTE COPERTURA AF	ARGINE
Name: A3 Colour: V Hatch: V	Name: ARGINE
Unit Weight: 19.8 kN/m3 Saturated U.W. 20 kN/m3	Unit Weight:
Strength Type: Mohr-Coulomb • $\tau = c' + \sigma'_n \tan \phi'$ Strength Parameters [5] Cohesion: 9.6 kN/m2 Phix 13.4 degrees	Strength Type: Mo Strength Paramete Cohesion:

Figura 5.9 Argilla e limi argillosi

] ARGILLA 🔲 M	aterial 11 📔 🗖	Material 12
Name: [CUPERTURA	Colour:		ch: 🗸
Unit Weight	19 kN/m3 □	Saturated U.W $\sigma = c' + \sigma'$	20 kN/m3
Suengui Type. Moni-	-Coulomb +		
Strength Parameters			1/2
Calculation	4 kN/m2	Phi	26.6 degrees
CORESION.			
Corresion.			
Corresion.			3

Figura 5.12 Capping finale

-		
Name: ARGINE	Colour:	
Unit Weight: 1	9 kN/m3 🔲 Satu	rated U.W. 20 KN/m
Strength Type: Mohr-Co	ulomb + τ =	$c' + \sigma'_n \tan \phi'$
		45
Strength Parameters		Ľ

Figura 5.10 Argine

ARGILLA	erial 11 📔 🔲 Material	12 🔲 Material 13 🔲 💶
Name: ARGILLA	Colour:	
Unit Weight: 1	9 kN/m3 🔲 Sal	turated U.W. 20 kN/m3
Strength Type: Mohr-Co	ulomb 👻 τ	$= c' + \sigma'_n \tan \phi'$
Strength Parameters		<u>Ľ</u>
Cohesion:	8 kN/m2	Phi: 19.6 degrees

Figura 5.13 Materasso argilloso

'm3 □	Saturated $\tau = c' +$	iu.w. ∏ •σ, tan	20 kN/m
•	$\tau = c' +$	-σí tan	6
		"	۲ 17/
kN/m2	Phi	2	4.8 degrees
	kN/m2	kN/m2 Phi:	kN/m2 Phi: 2

Figura 5.5 Rifiuti nuovi

📕 ARGINE 🛛 🗖 DRE	ENANTE
Colour:	✓ Hatch:
20.2 kN/m3 🗖	Saturated U.W. 20 RN/m3
ndrained (Phi=0) 🔹 🔻	$\tau = c$
Constant 👻	
57.1 kN/m2	
	ARGINE DR8 Colour: 20.2 kN/m3 C ndrained (Phi=0) ers Constant 57.1 kN/m2

Figura 5.8 Argilla consistente

DRENANTE	COF	PERTURA	ARGILLA 🛛 🗖 Ma	aterial 11 💶 🕨
Name: DREN/	ANTE	Colour:	👻 Hatch:	-
Unit Weigh	nt: 19	kN/m3 □ s	Saturated U.W.	20 kN/m3
Strength Type:	Mohr-Coulo	mb 💌	$\tau = c' + \sigma'_n \tan q$	5
Strength Parar	meters			12
Cohesion:		0.1 kN/m2	Phi: 26	.6 degrees

Figura 5.11 Materasso drenante

5.3 Carichi applicati

5.3.1 Azione veicoli

Vista la transitabilità degli argini Nord e Sud da parte dei mezzi di lavoro, si inserisce un carico q uniformemente distribuito pari a 20kPa. In accordo con l'Approccio A2+M2+R2 si applica l'opportuno coefficiente di sicurezza relativo ad un carico variabile sfavorevole (Tabella 6.2.I delle NTC 2008), ottenendo una pressione pari a 26kPa (q · γ_{A2}).

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_{\rm F}$ (o $\gamma_{\rm E}$)	EQU	(A1) STR	(A2) GEO
Permanenti Fa	Favorevole		0,9	1,0	1,0
	Sfavorevole	γ _{GI}	1,1	1,3	1,0
Permanenti non strutturali ⁽¹⁾	Favorevole	- γ _{G2}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3
Variabili —	Favorevole		0,0	0,0	0,0
	Sfavorevole	γQi	1,5	1,5	1,3

Nelle analisi sismiche il coefficiente di sicurezza da impiegare sulle azioni è pari all'unità.

Figura 5.14 Coefficienti parziali per le azioni o per l'effetto delle azioni

L'Argine di contenimento invece, a differenza degli argini Nord e Sud, non è carrabile dai mezzi di lavoro, quindi non sarà soggetto a particolari carichi dei veicoli.

5.3.2 Azione sismica

Visto il carattere dell'opera oggetto di verifica, nel codice di calcolo Slide è necessario inserire anche i parametri sismici. Tali parametri si determinano mediante l'impiego del foglio di calcolo specifico di comprovata affidabilità proposto da GeoStru.

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA CLIENTE: INSULA S.p.a.

FOGLIO 56 di 133

Figura 5.15 Definizione della posizione geografica del sito di interesse

Latitudine 45,571992	Longitudine 12,647978
(1)* Coordinate ED50 (°)	
Latitudine 45,572893	Longitudine 12,648959
Classe dell'edificio II. Affollamento normale. Assenz	a di funz. pubbliche e sociali 🗸 🗸
Classe dell'edificio II. Affollamento normale. Assenz Cu = 1	a di funz. pubbliche e sociali 🗸 🗸
Classe dell'edificio II. Affollamento normale. Assenz Cu = 1 Vita nominale (Opere provvisorie <=10, Opere	a di funz. pubbliche e sociali v e ordinarie
Classe dell'edificio II. Affollamento normale. Assenz Cu = 1 Vita nominale (Opere provvisorie <=10, Oper >=50, Grandi opere >=100)	a di funz. pubbliche e sociali ve ordinarie

Figura 5.16 Definizione della classe dell'edificio e della vita nominale dell'opera

Stato Limite	Tr [anni]	a _g [9]	Fo	Tc' [s]
Operatività (SLO)	30	0,028	2,496	0,203
Danno (SLD)	50	0,034	2,529	0,236
Salvaguardia vita (SLV)	475	0,075	2,614	0,383
Prevenzione collasso (SLC)	975	0,095	2,658	0,415
Periodo di riferimento per l'azione sismica:	50			

Figura 5.17 Parametri sismici

Nel caso di interesse si considera lo stato limite di salvaguardia della vita (SLV), quindi una accelerazione al sito pari a $a_g = 0.075$.

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

CLIENTE: INSULA S.p.a. FOGLIO 58 di 133

CALCOLO COEFFICIENTI S	ISMICI						
⊖ Muri di sostegno			OParatie				
Stabilità dei pendii e fond	lazioni						
Muri di sostegno che non sono in grado di subire spostamenti.							
H (m)				1			
us (m)				0.1			
Categoria sottosuolo				<mark>S1</mark> ∨			
Categoria topografica				T1 ~			
		SLO SL	D SLV SI	LC			
Ss * Amplificazione stratigrafica							
Cc *							
St *							
Amplificazione topografica		1,00	JU 1,00 1,	,00			
Acc.ne massima attesa al sito [m/s ²]							
Coefficienti	SLO	SLD	SLV	SLC			
kh	0,000	0,000	0,000	0,000			
kv							
Amax [m/s ²]	0,000	0,000	0,000	0,000			
Beta	0,200	0,200	0,200	0,200			

Figura 5.18 Calcolo dei coefficienti sismici

Da tali parametri si ricava la massima accelerazione sismica orizzontale pari a $a_{max} = S \cdot a_g = 0.075$. Noto tale valore è possibile ricavare i coefficienti sismici orizzontali e verticali da inserire nel codice Slide e rispettivamente pari a:

 $k_h = \beta_S \cdot a_{max}/g = 0.015$

 $k_v = 0.5 \cdot k_h = 0.008$

5.4 Modelli di calcolo

Nello specifico, nel seguente lavoro, sono stati realizzati i seguenti modelli di calcolo:

- 1. Modello 1: per la verifica di stabilità del corpo arginale Sud (statica e sismica);
- 2. Modello 2: per la verifica di stabilità del corpo arginale Nord (statica e sismica);
- 3. Modello 3: per la verifica di stabilità dell'Argine di contenimento (statica e sismica);

5.5 Risultati

5.5.1 Argine Sud statica

Figura 5.19 Bishop semplificato FS = 1.295

Figura 5.20 Janbu semplificato FS = 1.218

Figura 5.21 Spencer FS = 1.440

Figura 5.22 Morgenstern-Price FS = 1.417

■ 0.015
₩
₩
■ 0.008

■ 0.015
₩
₩
0.008

50

5.5.2 Argine Sud sismica

Figura 5.23 Bishop semplificato FS = 1.270

Figura 5.24 Janbu sempificato FS = 1.196

Figura 5.25 Spencer FS = 1.411

Figura 5.26 Morgenstern-Price FS = 1.383

5.5.3 Argine Nord statica

Figura 5.27 Bishop semplificato FS = 3.782

Figura 5.29 Spencer FS = 3.843

Figura 5.30 Morgenstern-Price FS = 3.827

5.5.4 Argine Nord sismica

Figura 5.31 Bishop semplificato FS = 4.301

Figura 5.33 Spencer FS = 4.473

Figura 5.34 Morgenstern-Price FS = 4.464

5.5.5 Argine di contenimento statica

Figura 5.35 Bishop semplificato FS = 1.438

Figura 5.36 Janbu semplificato FS = 1.360

Figura 5.37 Spencer FS = 1.611

Figura 5.38 Morgenstern-Price FS = 1.591

5.5.6 Argine di contenimento sismica

Figura 5.39 Bishop semplificato FS = 1.392

Figura 5.40 Janbu semplificato FS = 1.313

Figura 5.41 Spencer FS = 1.563

Figura 5.42 Morgenstern-Price FS = 1.546

MODELLAZIONE CON PLAXIS 2D 6

Il software di calcolo ad elementi finiti Plaxis 2D ha consentito non solo di ricavare i coefficienti di sicurezza per la stabilità globale, ma anche di quantificare i possibili cedimenti di argine e corpo rifiuti.

6.1 Codice di calcolo impiegato

FILE NR.

Il programma PLAXIS 2D, impiegato per il calcolo delle sezioni, è stato realizzato da un gruppo di ricercatori della Delft University of Technology guidati dal Prof. P.A. Vermeer, con il supporto scientifico delle Università di Grenoble, Oxford e Stuttgart).

PLAXIS è un programma bidimensionale agli elementi finiti che permette di tenere conto del comportamento elastoplastico del terreno seguendo contemporaneamente, per passi successivi, la variazione di stato tensionale e deformativo nei vari punti dell'ammasso considerato e degli elementi strutturali collegati.

Il programma PLAXIS è nato per specifiche esigenze di tipo geotecnico; esso permette di esaminare casi di stato piano di deformazione o di assialsimmetria.

La sua caratteristica peculiare è di utilizzare materiali con caratteristiche elastoplastiche, seguendo passo passo gli incrementi di carico (fino a grandi deformazioni, nel gual caso è possibile aggiornare la mesh) utilizzando il criterio di rottura di Mohr-Coulomb.

Il modello utilizzato è invece un modello elastoplastico ad incrudimento tipo Hardening Soil Model (HSM).

Il terreno è schematizzato mediante un insieme di elementi finiti a forma triangolare a quindici nodi che forniscono una distribuzione cubica delle tensioni e delle deformazioni all'interno di ciascun elemento (essendo polinomi del 4° ordine le funzioni di forma interpolanti il campo degli spostamenti); di conseguenza il programma individua con accuratezza campi di tensione e di deformazione complessi anche con un limitato numero di elementi. Esiste la possibilità di mettere in conto la presenza di elementi lineari del tipo "beam", "truss" e "geotessili" resistenti solo a trazione, di considerare la presenza di molle elastoplastiche, e di ridurre le caratteristiche meccaniche del terreno a contatto con elementi di diversa natura.

I dati principali richiesti dal programma sono:

- a. geometria del problema (coordinate dei vertici di quadrilateri che vengono poi suddivisi in triangoli a 15 nodi, posizione di elementi beam, truss, geotessili, molle elastoplastiche, vincoli, falda);
- b. caratteristiche degli elementi di terreno:
 - γ dry = peso totale dell'unità di volume emerso,
 - γ wet = peso totale dell'unità di volume immerso,
 - ϕ' = angolo d'attrito interno,
 - ψ = angolo di dilatanza,
 - G = modulo di elasticità tagliante,
 - = coefficiente di Poisson,
 - c' = coesione,
- c. coefficienti di permeabilità in direzione orizzontale e verticale;
- d. tipo di comportamento (drenato o non drenato);
- e. caratteristiche degli elementi lineari:

ν

EJ ed EA per gli elementi beam,

EA per gli elementi truss,

rigidezza elastica per elementi geotessili in trazione,

rigidezza e forza ultima per le molle elastoplastiche;

- f. definizione dei sistemi di carico;
- g. definizione delle pressioni idrostatiche, eventualmente variabili durante l'analisi del problema, o, quando sia richiesto, condizioni al contorno per il calcolo delle pressioni idrostatiche.

A seguire sono rappresentate le modellazioni adottate dal programma per:

legame costitutivo fra la tensione deviatorica (differenza fra la tensione assiale σ₁ e la tensione di confinamento radiale σ₃) e la deformazione assiale (ε₁);

FILE NR. 17089G1200B.doc

- relazione fra ε_v (deformazione volumetrica $\Delta V/V_0$) e ε_1 (deformazione assiale).

Il calcolo prevede in genere la suddivisione delle diverse fasi (corrispondenti all'applicazione di carichi, o a modifiche della configurazione geometrica per scavi o riporti, o a modifiche delle pressioni idrostatiche, o a dissipazione di pressioni neutre) in passi di calcolo, ed e' possibile quindi seguire l'evoluzione delle condizioni del terreno parallelamente alle prevedibili fasi costruttive.

Il programma è concepito in modo tale da applicare per passi i carichi desiderati, aggiornando di volta in volta i valori delle deformazioni e delle tensioni.

All'interno di ogni passo di carico il programma perviene all'equilibrio attraverso una serie di iterazioni sfruttando la matrice di rigidezza iniziale (metodo di Newton-Raphson modificato).

Il controllo della convergenza, al termine della i-esima iterazione viene effettuato attraverso la relazione:

$$\varepsilon_i = \frac{\left\| P_i \right\|}{\left\| \Sigma F \right\|}$$

dove:

- εi = errore della i-esima iterazione;
- $||P_i||$ = norma del vettore costituito dalle forze nodali non bilanciate; $||P_i||$ può essere definito come $||\Sigma F P_i||$, dove Pi è il vettore dei carichi nodali equivalenti al termine della i-esima iterazione (relativo allo stato tensionale ottenuto via legame costitutivo dallo stato deformativo);
- ||ΣF|| = norma del vettore dei carichi nodali equivalenti relativo al livello finale di carico del passo in esame.

In output sono disponibili, per ogni passo:

- spostamenti in tutti i nodi del sistema,
- stato tensionale in tutti i punti di integrazione (12 per triangolo),
- sollecitazioni di momento flettente, sforzo normale e taglio negli elementi beam e sforzo normale negli elementi truss, negli elementi geotessili e nelle molle elastoplastiche.

Varie routine grafiche permettono di visualizzare velocemente gli spostamenti e lo stato tensionale in ciascuna fase.

Il programma permette di risolvere i seguenti problemi:

- filtrazione, e sue conseguenze sul campo delle deformazioni e delle tensioni,
- carichi applicati, analisi delle deformazioni e delle tensioni, valutazione del carico limite,
- analisi della stabilità dei pendii,
- interazione terreno-struttura,
- effetto della presenza di geotessili,
- analisi della consolidazione.

Figura 6.1 Relazione fra la prova triassiale standard (drenata) e modello elastoplastico. σ_1 è la tensione assiale, σ_3 tensione radiale costante di confinamento, ε_v deformazione volumetrica, ε_1 è la deformazione assiale

6.2 Unità stratigrafiche, corpi arginali e RSU

In Plaxis 2D i terreni di fondazione, il corpo arginale e i rifiuti vecchi al di sotto del p.c., sono stati modellati con un modello costitutivo di tipo Hardening Soil, mentre per i rifiuti nuovi è stato usato un modello costitutivo di tipo Mohr – Coulomb. La stratigrafia implementata rispecchia quanto definito nel capitolo geotecnico; i primi due orizzonti di terreno al di sotto del p.c. coincidono rispettivamente con lo strato di riporto e quello di 3m di rifiuti.

Nelle immagini seguenti si riportano le principali caratteristiche meccaniche degli elementi appena descritti.

SOCIETA' DI INGEGNERIA GEOTECNICA E STRUTTURALE

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA CLIENTE: INSULA S.p.a.

FOGLIO 75 di 133

Property	Unit	Value	Value	Value	Value
Material set					
Identification number		1	2	3	4
Identification		Al	S1	A2	A3
Material model		Hardening sol	Hardening soil	Hardening soil	Hardening soil
Drainage type		Undrained (A)	Drained	Undrained (B)	Undrained (A)
Colour		RGB 161, 226, 232	RGB 134, 234, 162	RGB 236, 232, 156	RGB 195, 229, 249
Comments					
General properties					
Yunsat	kN/m³	18.80	18.60	20.20	19.80
Y _{sat}	kN/m³	18.80	18.60	20.20	19.80
Advanced					
Void ratio					
Dilatancy cut-off					
einit		0.5000	0.5000	0.5000	0.5000
e _{min}		0.000	0.000	0.000	0.000
e _{max}		999.0	999.0	999.0	999.0
Material set					
Identification number		1	2	3	4
Identification		A1	51	A2	A3
Material model		Hardening soil	Hardening soil	Hardening soil	Hardening soil
Drainage type		Undrained (A)	Drained	Undrained (B)	Undrained (A)
Colour		RGB 161, 226, 232	RGB 134, 234, 162	RGB 236, 232, 156	RGB 195, 229, 249
Stiffness					
E 50 ref	kN/m²	1400	12.70E3	3500	2170
E oed ref	kN/m²	1400	12.70E3	3500	2170
E _{ur} ref	kN/m²	4200	38.10E3	10.50E3	6510
power (m)		0.8000	0.5000	0.9000	0.8000
Alternatives					
Use alternatives					
C _c		0.2464	0.02717	0.09857	0.1590
C _s		0.07393	8.150E-3	0.02957	0.04770
e _{int}		0.5000	0.5000	0.5000	0.5000
Strength					
c _{ref}	kN/m²	16.70	8.000	80.00	12.00
φ (phi)	۰	24.40	33.50	0.000	23.70
ψ (psi)	٠	0.000	0.000	0.000	0.000

Figura 6.2 Caratteristiche meccaniche principali dei terreni di fondazione - prima parte

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

Property	Unit	Value	Value	Value	Value	Value
Material set						
Identification number		6	7	8	9	10
Identification		ARGINE	SUP	ARGILLA	DRENANTE	COPERTURA
Material model		Hardening soil				
Drainage type		Drained	Drained	Undrained (A)	Drained	Drained
Colour		RGB 182, 226, 190	RGB 230, 181, 132	RGB 200, 182, 137	RGB 185, 207, 205	RGB 222, 115, 186
Comments						
General properties						
Yunsat	kN/m³	19.00	19.00	19.00	19.00	19.00
Ysat	kN/m³	19.00	19.00	19.00	19.00	19.00
Advanced						
Void ratio						
Dilatancy cut-off						
eint		0.5000	0.5000	0.5000	0.5000	0.5000
e _{min}		0.000	0.000	0.000	0.000	0.000
e _{max}		999.0	999.0	999.0	999.0	999.0
Material set						
Identification number		6	7	8	9	10
Identification		ARGINE	SUP	ARGILLA	DRENANTE	COPERTURA
Material model		Hardening soil	Hardening soil	Hardening soil	Hardening sol	Hardening soil
Drainage type		Drained	Drained	Undrained (A)	Drained	Drained
Colour		RGB 182, 226, 190	RG8 230, 181, 132	RG8 200, 182, 137	RGB 185, 207, 205	RGB 222, 115, 186
Stiffness						
E 50 ref	kN/m²	20.00E3	8700	3000	8000	5000
E oed ref	k/N/m ²	20.00E3	8700	3000	8000	5000
E, ref	kN/m ²	60.00E3	26.10E3	9000	24.00E3	15.00E3
power (m)		0.5000	0.5000	0.8000	0.5000	0.5000
Alternatives						
Use alternatives						
C _c		0.01725	0.03966	0.1150	0.04312	0.06900
C _s		5.175E-3	0.01190	0.03450	0.01294	0.02070
einit		0.5000	0.5000	0.5000	0.5000	0.5000
Strength						
c _{ref}	kN/m²	7.000	1.000	10.00	0.1000	5.000
φ (phi)	•	35.00	30.00	24.00	32.00	32.00
ψ (psi)	۰	2.000	0.000	0.000	0.000	0.000

Figura 6.3 Caratteristiche meccaniche principali dei terreni di fondazione - seconda parte

SOCIETA' DI INGEGNERIA GEOTECNICA E STRUTTURALE

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA CLIENTE: INSULA S.p.a.

FOGLIO 77 di 133

roperty	Unit	Value	
Material set			
Identification number		5	
Identification		RIFIUTI	
Material model		Mohr-Coulomb	
Drainage type		Drained	
Colour		RGB 125, 149, 227	
Comments			
General properties			
Yunsat	kN/m ³	8.000	
Y _{sat}	kN/m³	8.000	
Advanced			
Void ratio			
Dilatancy cut-off			
eint		0.5000	
e _{min}		0.000	
e _{max}		999.0	
Material set			
Identification number		5	
Identification		RIFIUTI	
Material model		Mohr-Coulomb	
Drainage type		Drained	
Colour		RG8 125, 149, 227	
Stiffness			
E	ktN/m²	500.	
v (nu)		0.300	
Alternatives			
G	ktN/m²	192	
Eoed	ktN/m²	673.	
Strength			
Craf	ktN/m²	10.0	
φ (phi)	۰	30.0	
uu (05i)	•	0.00	

Property	Unit	Value	
Material set			
Identification number		11	
Identification		RIFIUTI VECCHI	
Material model		Hardening soil Drained RGB 241, 228, 246	
Drainage type			
Colour			
Comments			
General properties			
Yunsat	kN/m³	10.00	
Ysat	kN/m³	10.00	
Advanced			
Void ratio			
Dilatancy cut-off			
e _{int}		0.5000	
emin		0.000	
e _{max}		999.0	
Material set			
Identification number		11	
Identification		RIFIUTI VECCHI	
Material model		Hardenino sol	
Drainage type		Drained	
Colour		RG8 241, 228, 246	
Stiffness			
E ref	kN/m²	100	
= 50 = .ref	kts/m2	100	
∽oed ∈ ref	ket for 2	200	
	Ardin-	0.900	
Alternatives		0.000	
Use alternatives			
с,		0.345	
с.		0.103	
eine		0.500	
Strength			
Crut	kN/m ²	3.00	
o (phi)	•	22.0	

Figura 6.4 Caratteristiche meccaniche principali dei rifiuti nuovi Figura 6.5 Caratteristiche meccaniche principali dei rifiuti

vecchi

6.3 Fasi di calcolo

Nel seguito si presenta l'albero delle fasi adottate nel codice Plaxis 2D.

Figura 6.6 Fasi di calcolo per le sezioni arginali

Vista la dimensione dell'opera e il poco tempo a disposizione, si fissa per la fase Step 1 un tempo di costruzione pari a 10 giorni. La fase successiva di consolidazione viene fatta durare 20 giorni, in modo da cominciare la coltivazione dei rifiuti già dopo 1 mese dall'inizio della costruzione arginale. In sommità degli argini Nord e Sud, al fine di simulare la presenza del traffico stradale dovuto ai mezzi di lavoro, si applica un carico uniformemente distribuito pari a 20kPa; tale carico si omette per l'Argine di contenimento.

Al fine di simulare la fase di colmata e quella di realizzazione del sistema di copertura della discarica, si stimano per le fasi Rifiuti e Capping dei tempi di consolidazione rispettivamente pari a 730 giorni e 365 giorni.

Infine la consolidazione finale a lungo termine viene fatta arrestare solo quando si esaurisce la sovrapressione neutrale nei terreni di fondazione, ovvero quando nel sistema i cedimenti sono ormai maturati.

l calcoli condotti con metodo agli elementi finiti per propria natura non consentono di fattorizzare i parametri geotecnici come usualmente richiesto dalla normativa attuale per le analisi di stabilità di rilevati. In questo caso quindi il coefficiente globale di sicurezza calcolato con approcci FEM può essere derivato dal semplice confronto matematico fra coefficienti parziali applicati ai parametri geotecnici moltiplicato per il coefficiente di sicurezza globale. In questo caso, considerando terreni in condizioni non drenate, si impiegano il coefficiente γ cu = 1.4 sul materiale ed il coefficiente globale γ R = 1.1; si ricava un FS minimo pari a 1.54.

Per una migliore comprensione della fasistica si riportano le seguenti immagini di calcolo, valide per il modello dell'argine Sud ma del tutto analoghe a quelle degli altri argini modellati.

Figura 6.7 Fase iniziale di terreno indisturbato

 Θ

Figura 6.9 Step 1 – costruzione arginale e strato di sottofondo della discarica

Figura 6.10 Rifiuti – riempimento della discarica

Figura 6.11 Capping - realizzazione del sistema di copertura

SOCIETA' DI INGEGNERIA GEOTECNICA E STRUTTURALE

FILE NR. I 17089G1200B.doc

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

CLIENTE: INSULA S.p.a.

FOGLIO 82 di 133

6.4 Risultati

6.4.1 Argine Sud

0.40

0.30

0.20

0.10

0.00

Relative shear stress τ_{rel} (Time 10.00 day) Maximum value = 1.000 (Element 223 at Node 9920)

x

Figura 6.16 Superfici di potenziale scorrimento al termine del riempimento della discarica (FS = 1.697)

Figura 6.17 Stato tensionale di taglio normalizzato al termine del riempimento della discarica

Figura 6.18 Deformazioni al termine del ricoprimento della discarica

Figura 6.19 Superfici di potenziale scorrimento al termine del ricoprimento della discarica (FS = 1.703)

Figura 6.20 Stato tensionale di taglio normalizzato al termine del ricoprimento della discarica

Figura 6.21 Superfici di potenziale scorrimento a lungo termine dal ricoprimento della discarica (FS = 1.700)

6.4.2 Argine Nord

Figura 6.22 Deformazioni al termine dello Step 1

Figura 6.23 Superfici di potenziale scorrimento al termine dello Step 1 (FS = 2.388)

Figura 6.24 Stato tensionale di taglio normalizzato al termine dello Step 1

Figura 6.26 Superfici di potenziale scorrimento al termine del riempimento della discarica (FS = 4.427)

Figura 6.27 Stato tensionale di taglio normalizzato al termine del riempimento della discarica

Figura 6.28 Deformazioni al termine del ricoprimento della discarica

Figura 6.29 Superfici di potenziale scorrimento al termine del ricoprimento della discarica (FS = 2.691)

Figura 6.30 Stato tensionale di taglio normalizzato al termine del ricoprimento della discarica

Figura 6.31 Superfici di potenziale scorrimento a lungo termine dal ricoprimento della discarica (FS = 2.688)

6.4.3 Argine di contenimento

Figura 6.32 Deformazioni al termine dello Step 1

Figura 6.33 Superfici di potenziale scorrimento al termine dello Step 1 (FS = 1.822)

Maximum value = 1.000 (Element 243 at Node 11360) Minimum value = 0.06964 (Element 1668 at Node 3959)

Figura 6.34 Stato tensionale di taglio normalizzato al termine dello Step 1

Figura 6.35 Deformazioni al termine del riempimento della discarica

Figura 6.36 Superfici di potenziale scorrimento al termine del riempimento della discarica (FS = 1.846)

Figura 6.37 Stato tensionale di taglio normalizzato al termine del riempimento della discarica

Figura 6.38 Deformazioni al termine del ricoprimento della discarica

Figura 6.39 Superfici di potenziale scorrimento al termine del ricoprimento della discarica (FS = 1.840)

Figura 6.40 Stato tensionale di taglio normalizzato al termine del ricoprimento della discarica

Figura 6.41 Superfici di potenziale scorrimento a lungo termine dal ricoprimento della discarica (FS = 1.844)

7 MODELLAZIONE 3D

Al fine di determinare i cedimenti complessivi dell'opera, intesi come cedimenti dovuti ad una consolidazione sia del terreno di fondazione sia dei corpi discarica ed arginali, è stata effettuata una modellazione 3D, avvalendosi del software di calcolo geotecnico Midas GTS NX. Nel seguito si illustrano una descrizione sommaria del codice di calcolo ed i risultati ottenuti.

7.1 Codice di calcolo impiegato

La modellazione del problema è stata realizzata mediante il codice di calcolo Midas GTS NX 2016 (v2.1); si tratta di un software di calcolo geotecnico ad elementi finiti per lo studio della meccanica dei terreni e dotato di analisi 3D per comprendere problemi quali l'interazione tra terreno ed eventuali strutture, la realizzazione di scavi in profondità, la stabilità dei pendii, i possibili moti di filtrazione, i consolidamenti ed i cedimenti sotto specifiche condizioni di carico.

Midas GTS è stato sviluppato con TNO-DIANA, famosa società di R&D del Gruppo TNO di Delft, in collaborazione con la Delft University of Technology, nota università per la ricerca in ambito geotecnico ed idraulico, fondamentale per la validazione dei modelli adottati nei solutori. Il software prevede l'utilizzo di materiali con caratteristiche plastiche, seguendo passo passo gli incrementi di carico. Midas GTS consente inoltre di modellare in aggiunta al terreno, elementi di tipo strutturale, come ad esempio Beam, Truss, Plane Stress, Shell, etc. includendo una gestione delle combinazioni di carico e di vincolo. In questo modo è possibile svolgere simultaneamente una analisi terreno – struttura.

7.2 Geometria 3D del problema

Con il codice di calcolo Midas GTS NX è stato possibile studiare il problema nelle 3 dimensioni spaziali. In particolare è stato possibile inserire nel modello i corpi arginali esistenti, quindi costruire lo stato di fatto attuale e, in un secondo momento, modellare le nuove geometrie di corpo discarica e nuovi argini. Il modello di calcolo rispetta, in modo semplificato ma coerente con la realtà, le geometrie riportate nella planimetria di riferimento.

La mesh del terreno è stata vincolata in corrispondenza dei nodi del contorno, in modo da bloccare le traslazioni orizzontali ai lati e le traslazioni orizzontali e verticali sul fondo. Agli elementini dei rilevati arginali sono stati applicati vincoli di tipo "Non-Consolidation Buondary", necessari per considerare tali corpi come parti strutturali escluse dal calcolo dei cedimenti di consolidazione ma sui quali agisce comunque il peso proprio dei materiali.

Nelle fasi costruttive, anche se poco rilevante ai fini del cedimento totale, si considera un carico uniformemente distribuito pari a 20kPa in corrispondenza delle sommità arginali già presenti e di quelle in fase di progettazione, al fine di simulare il traffico sulle piste perimetrali.

La modellazione del pacchetto di copertura finale è stata simulata mediante l'applicazione di un carico uniformemente distribuito pari a circa 47kPa, dato dal prodotto tra il peso specifico del pacchetto di terreno superiore e lo spessore stesso dello strato:

 $q_s = \gamma_t \cdot s = 19 \cdot 2.5 = 47$ kPa.

Il volume di rifiuti vecchi è circoscritto alla sola area Sud-Ovest, ovvero al di sotto dell'area in cui si provvederà al completamento della discarica.

Figura 7.2 Vista laterale del modello

Figura 7.3 Particolare dello stato di fatto attuale (argini e RSU)

Figura 7.4 Particolare degli argini dello stato di progetto

Figura 7.5 Particolare del volume di rifiuti vecchi attualmente presenti al di sotto del piano campagna

Figura 7.6 Vincoli fissi e peso proprio degli elementi modellati

Figura 7.7 Vincoli di non consolidazione sui corpi arginali attuali e dello stato di progetto

0 49.8	m 99.6	📷 🖏 👲 - Basic	× All Geometries (P) × ∫ k ∫ k	= 🔆 🔩 🕒 🖗 🦑	· · ·	
z						
						Z X Y

Figura 7.8 Carico sulla sommità dei corpi arginali attuali e dello stato di progetto

Figura 7.9 Carico uniformemente distribuito rappresentante il pacchetto di copertura finale

7.3 Unità stratigrafiche, corpi arginali e RSU

La stratigrafia è analoga a quella riportata per il modello 2D eseguito con il codice di calcolo Plaxis; i terreni sono stati simulati con un modello di tipo "Modified Mohr Coulomb", che consente di definire due diversi valori del modulo elastico per le condizioni di carico e di scarico. Per il corpo arginale, invece, è stato adottato il modello costitutivo "Mohr Coulomb".

Figura 7.10 Modello "Modified Mohr COuomb" in Midas GTS NX

Figura 7.11 Modello "Mohr Coulomb" in Midas GTS NX

Figura 7.12 Particolari della stratigrafia adottata

7.4 Fasi di calcolo

Nel seguito si riporta l'immagine delle fasi costruttive adottate nel codice di calcolo Midas.

Figura 7.13 Fasi di calcolo

In particolare si distinguono tre macrofasi di costruzione differenti:

- la prima caratterizzata dalla dicitura SDF (stato di fatto) che rappresenta la modellazione dello stato attuale, in cui si inseriscono gli argini di contenimento attuali e la parte di corpo rifiuti da essi delimitata;
- la seconda caratterizzata dalla dicitura SDP (stato di progetto) che rappresenta la modellazione dello stato futuro, con la realizzazione dei nuovi sistemi arginali di contenimento e con la nuova colmata di rifiuti;
- la terza, che comincia con l'applicazione del sistema di copertura della discarica e termina con la coltivazione a lungo termine della stessa.

Nello specifico si definiscono:

- 1. Fase S.I.: fase iniziale con consolidazione in 1 step di carico con azzeramento cedimenti;
- 2. Fase ARG SDF: costruzione argini stato di fatto con consolidazione in 60 giorni con 2 step di carico uguali; applicazione degli opportuni vincoli e del carico in sommità arginale;
- Fase RSU SDF: costruzione della colmata attuale di rifiuti con consolidazione in 3650 giorni con 5 step di carico uguali;
- 4. Fase ARG SDP: costruzione nuovi argini di progetto con consolidazione in 30 giorni con 4 step di carico uguali; applicazione degli opportuni vincoli e del carico in sommità arginale;
- 5. Fase RSU SDP: costruzione della colmata di rifiuti di progetto con consolidazione in 3650 giorni con 10 step di carico logaritmici;
- 6. Fase Q: applicazione del sistema di copertura sulla discarica totale con consolidazione in 365 giorni con 2 step di carico uguali;
- 7. Fase CONS FINALE: consolidazione finale in 36500 giorni con 10 step di carico uguali.

Per una migliore comprensione della fasistica si riportano le seguenti immagini di calcolo.

Figura 7.15 Fase di costruzione argine stato di progetto

Figura 7.16 Fase di coltivazione rifiuti allo stato attuale

Figura 7.17 Fase di costruzione degli argini dello stato di progetto

Figura 7.18 Fase di coltivazione dei rifiuti dello stato di progetto

Figura 7.19 Fase di costruzione del pacchetto di copertura e consolidazione finale a lungo termine

SOCIETA' DI INGEGNERIA GEOTECNICA E STRUTTURALE

FILE NR. 17089G1200B.doc

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

7.5 Risultati

Si riportano i <u>cedimenti verticali</u> di consolidazione primaria calcolati con il modello Midas per le diverse fasi costruttive.

7.5.1 Fase 3: RSU SDF

Figura 7.21 Particolare dei cedimenti del terreno al di sotto dei RSU allo SDF

Figura 7.25 Particolare dei cedimenti degli argini di SDF e SDP

Figura 7.27 Vista globale

[DATA] DISC, Q, INCR=2(TIME=7.755e+003), [UNIT] kN, m

Figura 7.30 Sezione longitudinale sul Lotto Est

7.5.5 Fase 7: CONS FINALE

Figura 7.31 Vista globale a 30 anni

Figura 7.32 Vista globale a 50 anni

Figura 7.33 Vista globale a 100 anni

Figura 7.34 Particolare della Vista globale a 30 anni senza mesh RSU

[[]DATA] DISC, CONS FINALE, INCR=3 (TIME=1.871e+004), [UNIT] kN, m

Figura 7.35 Particolare della Vista globale a 30 anni senza mesh RSU; argini e strato superiore di terreno

7.5.6 Cedimenti in alcuni punti interni alla discarica

7.5.6.1 Elaborato grafico 19.09.2017

Nel seguito si riportano i cedimenti in corrispondenza di alcuni punti interni alla discarica; per la localizzazione dei punti di interesse si fa riferimento all'elaborato grafico ricevuto in data 19-09-2017 e recante alcune sezioni di riferimento in corrispondenza dell'area di interesse. Nelle immagini sottostanti si riportano gli stralci planimetrici dell'elaborato grafico ricevuto e le sezioni di riferimento.

Figura 7.36 Stralcio planimetrico – Parte 1/2

Figura 7.37 Stralcio planimetrico – Parte 2/2

Nell'immagine seguente invece si sovrappongono le sezioni di riferimento precedenti al modello di calcolo Midas GTS.

Figura 7.38 Sovrapposizione sezioni di riferimento a modello di calcolo Midas GTS

Intersezione tra sezioni di riferimento	n° punto	Cedimento in sommità [m]
Sez. A – Sez. I	1	2.18
Sez. A – Sez. H	2	2.33
Sez. A – Sez. G	3	2.54
Sez. A – Sez. F	4	2.38
Sez. A – Sez. E	5	1.47
Sez. A – Sez. D	6	1.05
Sez. B – Sez. F	7	0.54
Sez. B – Sez. E	8	1.54
Sez. B – Sez. D	9	1.47
Sez. B – Sez. C	10	1.33

Tabella 7.1 Cedimenti verticali in corrispondenza dei punti di riferimento all'interno della discarica

7.5.6.2 Elaborato grafico 15.12.2017

Nel seguito si riportano i cedimenti in corrispondenza di alcuni punti interni alla discarica; per la localizzazione dei punti di interesse si fa riferimento all'elaborato grafico ricevuto in data 15-12-2017 e recante alcune sezioni di riferimento in corrispondenza dell'area di interesse. Nelle immagini sottostanti si riportano gli stralci planimetrici dell'elaborato grafico ricevuto.

Figura 7.39 Stralcio planimetrico - Parte 1/2

Figura 7.40 Stralcio planimetrico – Parte 2/2

Nell'immagine seguente invece si sovrappongono i punti definiti nelle immagini precedenti al modello di calcolo Midas GTS.

Figura 7.41 Sovrapposizione punti di riferimento a modello di calcolo Midas GTS

SOCIETA' DI INGEGNERIA GEOTECNICA E STRUTTURALE

n° punto	Cedimento in sommità [m]	n° punto	Cedimento in sommità [m]
1	2.40	35	0.47
2	2.52	36	0.46
3	2.56	37	0.45
4	2.50	38	0.75
5	2.03	39	0.90
6	0.20	40	1.67
7	0.15	41	2.12
8	0.10	42	2.37
9	0.05	43	1.60
10	0.08	44	1.48
11	0.14	45	1.53
12	0.48	46	0.27
13	0.82	47	0.18
14	1.26	48	0.18
15	1.17	49	1.35
16	1.14	50	1.39
17	1.41	51	1.33
18	1.36	52	1.27
19	1.38	53	1.11
20	1.58	54	1.06
21	1.40	55	0.90
22	1.22	56	0.83
23	1.43	57	0.98
24	1.29	58	0.99
25	1.01	59	0.98
26	0.79	60	1.04
27	0.22	61	1.18
28	0.09	62	1.43
29	0.08	63	1.50
30	0.09	64	1.95
31	0.15	65	1.22
32	0.15	66	1.56
33	0.17	67	1.62
34	0.16		

7.5.7 Commenti

Al termine della fase 7, trascorsi 100 anni dall'applicazione del sistema di copertura, il cedimento massimo calcolato è pari a 2.71m. Dai risultati ottenuti si evince che già dopo 30 anni dal riempimento completo della discarica e dalla realizzazione della copertura (fine fase 6), si raggiungono i cedimenti finali. I cedimenti che maturano dai 30 ai 100 anni sono talmente piccoli da considerarsi praticamente esauriti (differenziale tra i cedimenti nei due periodi citati pari a circa 1mm).

Tabelle ed immagini seguenti riportano gli andamenti dei cedimenti relativi a due punti significativi nella zona di interesse:

- punto 4: in corrispondenza della colmata di rifiuti allo stato attuale o comunque precedente alla colmata di progetto dalla Fase 3 alla Fase 7;
- punto 5: in corrispondenza della nuova colmata di rifiuti di progetto dalla Fase 5 alla Fase 7.

S _{MAX} [m]	t [gg]	t [anni]
0.000	0.00	0.00
-0.258	730.00	2.00
-0.516	1460.00	4.00
-0.773	2190.00	6.00
-1.028	2920.00	8.00
-1.283	3650.00	10.00
-1.282	3657.50	10.02
-1.282	3665.00	10.04
-1.283	3672.50	10.06
-1.283	3680.00	10.08
-1.282	3710.16	10.16
-1.282	3800.66	10.41
-1.283	3951.49	10.83
-1.284	4162.65	11.40
-1.285	4434.13	12.15
-1.287	4765.95	13.06
-1.288	5158.10	14.13
-1.290	5610.58	15.37
-1.292	6123.39	16.78
-1.295	6696.53	18.35
-1.298	7330.00	20.08
-1.836	7512.50	20.58
-2.378	7695.00	21.08
-2.381	11345.00	31.08
-2.381	14994.98	41.08
-2.381	18644.98	51.08
-2.381	22294.98	61.08
-2.382	25944.98	71.08
-2.382	29594.98	81.08
-2.382	33244.98	91.08
-2.382	36894.98	101.08
-2.382	40544.98	111.08
-2.382	44194.98	121.08

Tabella 7.3 Cedimenti per il punto 4

Tabella 7.4 Cedimenti per il punto 5

S _{MAX} [m]	t [gg]	t [anni]
0.000	0.00	0.00
-0.010	30.16	0.08
-0.026	120.66	0.33
-0.054	271.49	0.74
-0.093	482.65	1.32
-0.143	754.13	2.07
-0.204	1085.95	2.98
-0.276	1478.10	4.05
-0.359	1930.58	5.29
-0.452	2443.39	6.69
-0.556	3016.53	8.26
-0.671	3650.00	10.00
-1.049	3832.50	10.50
-1.445	4015.00	11.00
-1.475	7665.00	21.00
-1.475	11314.98	31.00
-1.475	14964.98	41.00
-1.475	18614.98	51.00
-1.474	22264.98	61.00
-1.474	25914.98	71.00
-1.474	29564.98	81.00
-1.474	33214.98	91.00
-1.473	36864.98	101.00
-1.473	40514.98	111.00

Figura 7.42 Andamento dei cedimenti nel tempo per il punto 4 (dalla Fase 3 alla Fase 7)

Figura 7.43 Andamento dei cedimenti nel tempo per il punto 5 (dalla Fase 5 alla Fase 7)

Figura 7.44 Sovrapposizione cedimenti dei punti 4 e 5

Nel grafico sopra riportato il punto di partenza coincide con l'inizio della Fase 3, ovvero quella per cui si ha la coltivazione dei rifiuti allo stato attuale; per il punto 4 si registra quindi un primo abbassamento, fino a circa 1.28m. Tale cedimento si mantiene pressoché costante nella fase successiva di costruzione degli Argini Nord e Sud (Fase 4). A partire dal termine di questa fase, si procede alla coltivazione dei rifiuti allo stato di progetto (Fase 5), registrando quindi un progressivo incremento dei cedimenti in corrispondenza del punto 5. La coltivazione dei nuovi rifiuti non incide significativamente sui cedimenti del punto 4, sufficientemente lontano da non risentire l'effetto dell'incremento del nuovo carico. La fase 6 di realizzazione del sistema di copertura (applicazione di un carico uniformemente distribuito) influisce sull'andamento dei cedimenti per entrambi i punti di riferimento. Infine nella fase di consolidazione finale (Fase 7) i cedimenti primari si possono considerare maturati dopo circa 30 anni di vita utile, e si mantengono inalterati nel tempo.

7.6 Cedimenti secondari

L'analisi svolta con il codice di calcolo Midas GTS non ha consentito di calcolare i cedimenti dovuti alla consolidazione secondaria. Per questo motivo, nel seguente capitolo, si calcolano tali cedimenti per via

FILE NR. 17089G1200B.doc

teorica, considerando, come dati di partenza, i risultati dell'analisi con il software di calcolo e corrispondenti alla fase finale.

7.6.1 Teoria

Il cedimento secondario si calcola per i primi tre strati di terreno, fino ad una profondità di 7.5m dal p.c., utilizzando la formulazione di Sowers (1973):

 $S_s = C_\alpha \cdot H \cdot log(t_2/t_1)$

Dove:

- Cα è il coefficiente di consolidazione secondaria valutato pari a Cα = 0.06;
- H è lo spessore dell'unità stratigrafica considerata;
- t₁ e t₂ sono i tempi di riferimento per il calcolo, ed in particolare t₂ > t₁ con t₁ che indica il tempo necessario affinché si sviluppi completamente la consolidazione primaria.

I cedimenti secondari sono deformazioni differite nel tempo e che si verificano anche a tensioni costanti a causa della viscosità dei terreni. Tali cedimenti si sviluppano al termine del processo di consolidazione primaria (dal tempo t₁) e possono essere molto rilevanti in terreni coesivi, come argille e torbe. Nel caso dei rifiuti i cedimenti secondari sono dovuti alla degradazione biologica della sostanza organica, a cui segue la produzione di percolato e di biogas. I cedimenti secondari possono durare molto nel tempo, fino alla stabilizzazione completa del rifiuto.

In questa trattazione non si considera la componente di biodegradazione dei rifiuti, per cui, nei calcoli proposti, si impiega un coefficiente C_{α} relativo solo al contributo del cedimento meccanico; i cedimenti ricavati si considerano quindi valori minimi.

Per ogni strato si considera un cedimento secondario si funzione dello spessore dello strato Hi determinato in accordo con i cedimenti totali calcolati nell'analisi FEM. Il cedimento secondario viene calcolato sulle sezioni qui di seguito esposte:

- Sezione Nord-Sud;
- Sezione Est-Ovest;
- Argine Nord;
- Argine Sud;

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA CLIENTE: INSULA S.p.a. FOGLIO 122 di 133

- Argine Est;
- Argine Ovest.

Figura 7.45 Sezioni di riferimento per il calcolo dei cedimenti secondari

Si fa notare che le sezioni Nord-Sud ed Est-Ovest tagliano volumi di terreno di fondazione differenti, in funzione della presenza o meno dello strato di rifiuti posto al di sotto del p.c. e localizzato nel solo Lotto Sud-Ovest della discarica; in particolare tale strato si colloca nella seconda parte della Sezione Nord-Sud e nella prima parte della Sezione Est-Ovest. Lo strato di terreno formato da vecchi rifiuti sarà contraddistinto da un indice dei vuoti posto a cautelativamente pari a $e_0 = 2.0$. Nelle tabelle sottostanti si raccolgono i principali parametri impiegati per il calcolo dei cedimenti secondari.

SOCIETA' DI INGEGNERIA GEOTECNICA E STRUTTURALE

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

CLIENTE: INSULA S.p.a. FOGLIO 123 di 133

CEDIMENTO SECONDARIO Sez N-S Parte 1/2					
STRATO	e0	Cα	t ₁	t ₂	
RSU SDF	2.0	0.120	10	40	
S1	0.5	0.030	10	40	
S2	0.5	0.030	10	40	
S3	0.5	0.030	10	40	

CEDIMENTO SECONDARIO Sez N-S Parte 2/2						
STRATO	e0	Cα	t ₁	t ₂		
RSU SDP	2.0	0.120	10	40		
S1	0.5	0.030	10	40		
RSU SDP	2.0	0.120	10	40		
S3	0.5	0.030	10	40		

Figura 7.46 Parametri per il calcolo del cedimento secondario per la Sezione Nord-Sud Parte 1/2

CEDIMENTO SECONDARIO Sez E-O Parte 1/2						
STRATO	e0	Cα	t ₁	t ₂		
RSU SDP	2.0	0.120	10	40		
S1	0.5	0.030	10	40		
RSU SDP	2.0	0.120	10	40		
S3	0.5	0.030	10	40		

Figura 7.48 Parametri per il calcolo del cedimento secondario per la Sezione Est-Ovest Parte 1/2

Figura 7.47	Parametri per il calcolo del cedimento secondario
	per la Sezione Nord-Sud Parte 2/2

CEDIMENTO SECONDARIO Sez E-O Parte 2/2						
STRATO	e0	Cα	t ₁	t ₂		
RSU SDF	2.0	0.120	10	40		
S1	0.5	0.030	10	40		
S2	0.5	0.030	10	40		
S3	0.5	0.030	10	40		

Figura 7.49 Parametri per il calcolo del cedimento secondario per la Sezione Est-Ovest Parte 2/2

7.6.2 Risultati

Nel seguito si riportano i valori del cedimento secondario (S_s) e del relativo cedimento totale (S_{tot}), dato dalla somma tra il secondario e quello ricavato dall'analisi FEM.

 $S_{tot} = S_{FEM} + S_s$

Figura 7.50 Cedimenti secondario e totale lungo la Sezione Nord-Sud

Figura 7.51 Cedimenti secondario e totale lungo la Sezione Est-Ovest

Figura 7.53 Cedimenti secondario e totale lungo la Sezione Argine Ovest

Figura 7.54 Cedimenti secondario e totale lungo la Sezione Argine Est

Figura 7.55 Cedimenti secondario e totale lungo la Sezione Argine Nord

Prendendo come riferimento la Sezione Nord-Sud, si osserva, passando in corrispondenza della linea di demarcazione dai rifiuti allo SDF e quelli allo SDP, ovvero tra le progressive 200m e 300m, una sensibile riduzione nell'andamento dei cedimenti calcolati (circa 80cm). Tale riduzione è dovuta al fatto che il nuovo incremento di carico dovuto agli RSU dello SDP interessa delle porzioni di terreno che hanno già scontato una parte di cedimenti di natura primaria, per cui sono meno influenzate dallo stato tensionale indotto proprio dal corpo stesso della discarica. Tale considerazione vale solo per quelle zone di confine tra vecchi e nuovi RSU, mentre, nelle zone "vergini", non interessate da precedenti carichi di consolidazione, si registra un incremento dei cedimenti totali.

l cedimenti sono anche funzione del volume di rifiuti coltivato: nella prima parte della Sezione Nord-Sud, da 0 a 200m circa, la quota sommitale del cumulo di rifiuti dello SDF passa rapidamente da +6.0m a

+15.0 circa sul p.c. (al netto del sistema di copertura), mentre nella seconda parte della stessa Sezione, da 250 a 550m, la quota sommitale dei RSU dello SDP decresce con altrettanta rapidità da +15.0m a +6.0m in corrispondenza dell'argine Sud di progetto.

Analoghe considerazioni possono essere estese anche alla Sezione Est-Ovest: i cedimenti, funzione di terreno di fondazione e volume di carico raggiunto, aumentano nella prima parte, da 0 a 150m, per poi leggermente decrescere nella seconda sino ai 400m in corrispondenza del sistema arginale dello SDF.

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

8 VERIFICA DI STABILTA' DELLA SCARPATA CORPO RIFIUTI

8.1 Premessa

In ogni discarica la capacità di contenimento dei rifiuti è strettamente legata alle quote sommitali raggiunte e alle pendenze delle scarpate di progetto; maggiori sono le pendenze e le quote sommitali, maggiore sarà l'invaso per la raccolta del materiale. Tuttavia, quando le pendenze sono troppo accentuate, lo strato protettivo di copertura della discarica può risultare instabile, con conseguente distacco e scivolamento del pacchetto stesso di terreno verso valle. Nel presente documento si riporta il calcolo per la verifica del capping (ovvero il sistema di copertura).

8.2 Descrizione dello stato di progetto

La copertura del cumulo è costituita da strati di materiali eterogenei aventi tra loro diverse caratteristiche; in particolare si distingue la zona in scarpata, dove è necessario prevedere l'utilizzo di geocompositi in grado di garantire la stabilità della parete inclinate, e le aree in piano, dove tali elementi non si rendono necessari.

Copertura delle superfici in piano dal basso verso l'alto:

- strato di regolarizzazione con terreno di riporto;
- geotessile non tessuto da 250gr/m²;
- strato drenante per il biogas di spessore 50cm;
- geotessile non tessuto da 250gr/m²;
- argilla compattata di spessore 50cm;
- geotessile non tessuto da 250gr/m²;
- strato drenante per il biogas di spessore 50cm;
- geotessile non tessuto da 250gr/m²;
- terreno vegetale di spessore 100cm.

Copertura delle superfici inclinate dal basso verso l'alto:

• strato di regolarizzazione con terreno di riporto;

• geotessile non tessuto da 250gr/m²;

FILE NR. 17089G1200B.doc

- geocomposito bentonitico;
- geocomposito drenante;
- geostuoia tridimensionale grimpante;
- terreno vegetale di spessore 100cm.

La geostuoia grimpante si dovrà estendere in sommità per un tratto sufficientemente lungo tale da garantire l'ancoraggio della geostuoia stessa nel terreno. Per una migliore comprensione dei dettagli appena descritti si rimanda alle tavole di progetto.

8.3 Calcolo delle azioni e verifica di scorrimento

Le verifiche di sicurezza agli SLU si effettuano secondo l'Approccio 1 Combinazione 2 (A2+M2+R2). Nel seguito si riportano le tabelle estrapolate dalle NTC 2008 con i coefficienti parziali da applicare sulle azioni, sui parametri geotecnici del terreno e sulle resistenze.

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_{\rm F}$ (o $\gamma_{\rm E}$)	EQU	(A1) STR	(A2) GEO
Dommon on t	Favorevole		0,9	1,0	1,0
Permanenti	Sfavorevole		1,1	1,3	1,0
D	Favorevole	- γ _{G2}	0,0	0,0	0,0
reimanenti non strutturan	Sfavorevole		1,5	1,5	1,3
Variahili	Favorevole		0,0	0,0	0,0
v ariadili	Sfavorevole	YQi	1,5	1,5	1,3

Tabella 8.1 Coefficienti parziali per le azioni o per l'effetto delle azioni

Tabella 8.2 Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di	tan φ' _k	Yo	1,0	1,25
resistenza al taglio				
Coesione efficace	c' _k	Ye	1,0	1,25
Resistenza non drenata	c _{uk}	Yeu	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

FILE NR. 17089G1200B.doc

LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

Tabella 8.3 Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo

Coefficiente	R2	
$\gamma_{\rm R}$	1.1	

Nel calcolo delle azioni stabilizzanti ed instabilizzanti si considerano i parametri di input riportati nella seguente tabella e relativi alla sezione di riferimento critica, dove la pendenza della scarpata dei rifiuti è più accentuata. A favore di sicurezza si assume un angolo di attrito critico tra geocomposito bentonitico e geocomposito drenante pari a 10°.

Figura 8.1 Sezione tipo e forze computate

Tabella 8.4 parametri di input per il calcolo delle forze instabilizzanti e stabilizzanti

SEZIONE DI RIFERIMENTO				
Peso specifico terreno bagnato	γsat [kN/mc]	19		
Peso specifico terreno alleggerito	γd [kN/mc]	18		
Angolo sommità	α [°]	1.9		
Angolo scarpata	β [°]	12		
Spessore di terreno in scarpata	t [m]	1		
Spessore di terreno in sommità	s [m]	1		
Altezza cuneo di spinta a riposo	H [m]	0		
Lunghezza scarpata con berma	L1 [m]	12		
Lunghezza berma	L[m]	0		
Lunghezza ancoraggio in sommità	L2 [m]	10		
Lunghezza scarpata	L3 [m]	12		
Angolo di attrito cuneo di spinta	Φ[°]	20		
Coeff di spinta a riposo	K0 [-]	0.66		
Angolo di attrito crit. geoc./geoc.	δ [°]	10		
Larghezza trincea	b [m]	0		
Altezza trincea	h [m]	0		

Le azioni instabilizzanti sono rappresentate dalla sola forza di scivolamento Fs agente lungo la scarpata e strettamente dipendente dalle caratteristiche geometriche della scarpata stessa. La forza F_S si calcola

a partire dal peso della porzione di terreno saturo in scarpata e si moltiplicata per il coefficiente $\gamma_{G1,(A2)}$ = 1.0, valido per carico permanente sfavorevole.

 $F_{S,d} = W1_{sat} \cdot sin\beta \cdot \gamma_{G1(A2)}$

FILE NR. 17089G1200B.doc

La forza stabilizzante totale F_{tot} è invece data dalla somma di tre contributi e opportunamente ridotta con il coefficiente y_{R2} = 1.1:

- Forza di attrito in sommità: F₁ = (W2_d + W_t) · cosα · tanδ;
- Forza di attrito in corrispondenza della scarpata: $F_2 = W1_d \cdot \cos\beta \cdot \tan\delta$;
- Resistenza del cuneo di terreno a riposo ai piedi della scarpata: $F_p = 0.5 \cdot \gamma_d \cdot H^2 \cdot K_0$.

$F_{tot,d} = (F_1 + F_2 + F_p)/\gamma_{R2}$

Con i termini W si indicano i pesi dei terreni che incidono nella verifica a scorrimento; il pedice "t" si riferisce al peso del terreno in trincea; H è l'altezza del cuneo di terreno a riposo ai piedi della scarpata. Nell'immagine seguente si riportano i pesi delle porzioni di terreno calcolati e le relative verifiche.

D eschale Hansen stand the second				
Pesi delle porzioni di terreno				
Peso scarpata satura	W1sat [kN/m]	228.00		
Peso scarpata alleggerita	W1d [kN/m]	216.00		
Peso sommità satura	W2sat [kN/m]	190.00		
Peso sommità alleggerita	W2d [kN/m]	180.00		
Peso trincea	Wt [kN/m]	0.00		
Coefficienti da normativa				
Coefficiente A2 da NTC	γA2 [-]	1		
Coefficiente R2 da NTC	γR2 [-]	1.1		
Verifiche				
Forza di scivolamento scarpata	Fsd [kN/m]	47.40		
Forza resistente totale	Ftotd [kN/m]	62.71		
Fattore di sicurezza ulteriore	FS [-]	1.1		
Fsd / Fstotd	[-]	1.32		
Verifica	verificato			

Tabella 8.5 Calcolo delle forze instabilizzanti, stabilizzanti e relative verifiche

Come si evince dalla tabella sopra riportata la verifica risulta soddisfatta.

In accordo con l'azione di scorrimento calcolata, e considerando un opportuno coefficiente di sicurezza posto cautelativamente pari a 2, si prescrive l'adozione di geocompositi aventi una resistenza a trazione longitudinale uguale o superiore a 120kN/m.

FILE NR. 17089G1200B.doc LAVORO: COMPLETAMENTO DELLA MESSA IN SICUREZZA DELLA DISCARICA PIAVE NUOVO – IESOLO – RELAZIONE GEOTECNICA

9 STABILITA' DEL TERRENO DI FONDAZIONE

Il calcolo della capacità portante è stato effettuato considerando parametri geotecnici mediati nei primi 10m di terreno al di sotto del corpo discarica. Si considera una superficie quadrata di lato pari a 10m in corrispondenza del corpo discarica, laddove si raggiunge la quota massima di abbancamento rifiuti.

Il carico verticale agente sul piano di imposta della discarica, dovuto alla presenza dei rifiuti e allo strato di copertura di spessore rispettivamente pari a 12.0m e 2.5m è pari a circa 143.5kPa.

La capacità portante ammissibile di progetto è stata calcolata con la teoria di Vesic, considerando un coefficiente di sicurezza FS pari a 3.0 e in condizioni drenate quindi a lungo termine.

VESIC DRENATE						
c' [kN/mq]	4.9	q'[kN/mq]	0	0.5gB [kN/mq]	78.12	
Nc [-]	18.3	Nq [-]	8.8	Νγ [-]	8.4	
sc [-]	1.483	sq [-]	1.428	sg [-]	0.6	
dc [-]	1.14	dq [-]	1.042	dg [-]	1	
ic [-]	1	iq [-]	1	ig [-]	1	
gc [-]	1	gq [-]	1	gg [-]	1	
bc [-]	1	bq [-]	1	bg [-]	1	
	150.4		0.0		394.7	
				qult [kPa]	545.1	
				FS [-]	3.0	
				qamm [kPa]	181.7	

 Tabella 9.1 Calcolo della capacità portante secondo Vesic

Dai calcoli condotti si evince che la verifica a capacità portante risulta soddisfatta, essendo q_{amm} > q_{agente}.

10 VERIFICA DELLA GEOMEMBRANA DI IMPERMEABILIZZAZIONE

In relazione ai cedimenti registrati alla base della discarica si deducono gli sforzi agenti sulle geomembrane in HDPE e se ne verifica la conformità con i parametri di resistenza dei manti sintetici ricavati sulla base delle caratteristiche tecniche del materiale. In particolare si sceglie una geomembrana avente le seguenti proprietà fisiche:

- modulo elastico E = 200MPa;
- tensione allo snervamento $\sigma_y = 15$ MPa;
- allungamento allo snervamento $\varepsilon_y > 9\%$;
- tensione a rottura σ_r = 26MPa;
- allungamento a rottura $\varepsilon_r > 700\%$.

A favore della sicurezza si considera un cedimento complessivo massimo pari a 500mm; considerando una lunghezza della geomembrana pari a circa 30m sulla sezione più corta, si ricava una deformazione pari a:

 $\epsilon = (\Delta z/L) \cdot 100 = 0.5 / 30 \cdot 100 = 1.67\%$

Si ricava quindi il seguente sforzo tensionale:

 $\sigma_{ced} = (\Delta z/L) \cdot E = 3.33MPa.$

Le deformazioni e gli sforzi calcolati sono inferiori rispetto ai valori caratteristici di resistenza della geomembrana e non danneggiano la tenuta dei manti impermeabilizzanti. I giunti di collegamento tra i teli di geomembrana dovranno essere opportunamente realizzati per garantire la resistenza allo sforzo tensionale calcolato.

11 CONCLUSIONI

Dai risultati ricavati con i codici di calcolo 2D non si evidenziano particolari stati di instabilità del sistema formato dal corpo arginale e dal corpo rifiuti. In particolare nel codice di calcolo Slide i valori di FS nelle fasi statica e sismica sono tutti maggiori di 1.1, coefficiente parziale per le verifiche di sicurezza di opere in materiali sciolti e fronti di scavo secondo l'Approccio 1 Combinazione 2 delle NTC 2008. Anche i valori di FS ottenuti con Plaxis 2D sono sufficienti ai fini della stabilità del sistema, essendo in ogni fase di costruzione maggiori del FS minimo posto, a favore di sicurezza, pari a 1.54.

Nelle tabelle seguenti, a titolo riassuntivo, si riportano i minimi coefficienti di sicurezza ottenuti dalle modellazioni svolte.

Sezione di studio	FS di sicurezza minimo
Argine Sud – Statica	1.218
Argine Sud – Sismica	1.196
Argine Nord – Statica	3.615
Argine Nord – Sismica	4.047
Argine di contenimento - Statica	1.360
Argine di contenimento - Sismica	1.313

Tabella 11.1 Coefficienti di sicurezza minimi ottenuti con Slide

Tabella 11.2 Coefficienti di sicurezza minimi ottenuti con Plaxis 2D

Sezione di studio	FS di sicurezza minimo
Argine Sud	1.661
Argine Nord	2.388
Argine di contenimento	1.822

I cedimenti ricavati dal modello FEM risultano, infine, compatibili con il tipo di opera e la destinazione d'uso.

L'analisi tridimensionale evidenzia che il completamento della discarica non influisce in modo rilevante sulle opere attualmente presenti nell'area di interesse. La presenza del banco di rifiuti fortemente compressibili nel Lotto Sud-Ovest della discarica determina un cedimento maggiore del piano campagna rispetto alle zone circostanti. I cedimenti primari calcolati con il codice di calcolo si possono considerare in fase di esaurimento a distanza di 30 anni dalla chiusura della discarica.